2023-10-30 15:56:04 -04:00
# ECE 205: Advanced Calculus 1
2023-10-30 18:19:46 -04:00
## Laplace transform
The Laplace transform is a wonderful operation to convert a function of $t$ into a function of $s$. Where $s$ is an unknown variable independent of $t$:
$$
\mathcal L\{f(t)\}=F(s)=\int^\infty_0e^{-st}f(t)dt, s > 0
$$
??? example
To solve for $\mathcal L\{\sin(at)\}$:
\begin{align*}
\mathcal L\{f(t)\}& =\int^\infty_0e^{-st}\sin(at)dt \\
\\
\text{IBP: let $u=\sin(at)$, $dv=e^{-st}dt$:} \\
& =\lim_{B\to\infty} \underbrace{\biggr[
\cancel{-\frac 1 se^{-st}\sin(at)}}_\text{0 when $s=0$ or $s=\infty$}+\frac a s\int e^{-st}\cos(at)dt
\biggr]^B_0 \\
& =\frac a s\lim_{B\to\infty}\left[\int e^{-st}\cos(at)dt \right]^B_0 \\
\text{IBP: let $u=\cos(at)$, $dv=e^{-st}dt$:} \\
& =\frac a s \lim_{B\to\infty}\left[
-\frac 1 s e^{-st}\cos(at)-\frac a s\underbrace{\int e^{-st}\sin(at)dt}_{\mathcal L\{\sin(at)\}}
\right]^B_0 \\
& =\frac{a}{s^2}-\frac{a^2}{s^2}\mathcal L\{\sin(at)\} \\
\mathcal L\{\sin(at)\}\left(1+\frac{a^2}{s^2}\right)& =\frac{a}{s^2} \\
\mathcal L\{\sin(at)\}& =\frac{a}{a^2+s^2}, s > 0
\end{align*}
A **piecewise continuous** function on $[a,b]$ is continuous on $[a,b]$ except for a possible finite number of finite jump discontinuities.
- This means that any jump discontinuities must have a finite limit on both sides.
- A piecewise continuous function on $[0,\infty)$ must be piecewise continuous $\forall B>0, [0,B]$.
The **exponential order** of a function is $a$ if there exist constants $K, M$ such that:
$$|f(t)|\leq Ke^{at}\text{ when } t\geq M$$
!!! example
- $f(t)=7e^t\sin t$ has an exponential order of 1.
- $f(t)=e^{t^2}$ does not have an exponential order.
### Linearity
A **piecewise continuous** function $f$ on $[0,\infty)$ of an exponential order $a$ has a defined Laplace transform for $s>a$.
Laplace transforms are **linear** . If there exist LTs for $f_1, f_2$ for $s>a_1, a_2$, respectively, for $s=\text{max}(a_1, a_2)$:
$$\mathcal L\{c_1f_1 + c_2f_2\} = c_1\mathcal L\{f_1\} + c_2\mathcal L\{f_2\}$$
??? example
We find the Laplace transform for the following.
$$
f(t)=\begin{cases}
1 & 0\leq t < 1 \\
e^{-t} & t\geq 1
\end{cases}
$$
Clearly $f(t)$ is piecewise ocontinuous on $[0,\infty)$ and has an exponential order of -1 when $t\geq 1$ and 0 when $0\leq t< 1 $. Thus $ \mathcal L \{f ( t ) \}$ is defined for $ s > 0$.
\begin{align*}
\mathcal L\{f(t)\}& =\int^1_0 e^{-st}dt + \int^\infty_1e^{-st}e^{-t}dt \\
\tag{$s\neq 0$}& =\left[-\frac 1 s e^{-st}\right]^1_0 + \int^\infty_1e^{t(-s-1)}dt \\
& =-\frac 1 se^{-s}+\frac 1 s + \lim_{B\to\infty}\left[ \frac{1}{-s-1}e^{t(-s-1)} \right]^B_1 \\
\tag{$s\neq 0,s>-1$}& =\frac{-e^{-s}+1}{s} -\frac{e^{-s-1}}{-s-1}
\end{align*}
We solve for the special case $s=0$:
\begin{align*}
\mathcal L\{f(t)\}& =\int^1_0 e^{0}dt + \int^\infty_1e^{-st}e^{-t}dt \\
& =1 -\frac{e^{-s-1}}{-s-1} \\
\end{align*}
$$
\mathcal L\{f(t)\}=
\begin{cases}
\frac{-e^{-s}+1}{s}-\frac{e^{-s-1}}{-s-1} & s\neq 0, s>-1 \\
1-\frac{e^{-s-1}}{-s-1} & s=0
\end{cases}
$$
If there exists a transform for $s>a$, the original function multiplied by $e^{-bt}$ exists for $s>a+b$.
$$\mathcal L\{f(t)\}=F(s), s>a\implies \mathcal L\{e^{-bt}f(t)\}=F(s),s>a+b$$
### Inverse transform
The inverse is found by manipulating the equation until you can look it up in the [Laplace Table ](#resources ).
The inverse transform is also **linear** .
### Inverse of rational polynomials
If the transformed function can be expressed as a partial fraction decomposition, it is often easier to use linearity to reference the table.
$$\mathcal L^{-1}\left\{\frac{P(s)}{Q(s)}\right\}$$
- $Q, P$ are polynomials
- $\text{deg}(P) > \text{deg}(Q)$
- $Q$ is factored
??? example
\begin{align*}
\mathcal L^{-1}\left\{\frac{s^2+9s+2}{(s-1)(s^2+2s-3)}\right\} & =\mathcal L^{-1}\left\{\frac{A}{s-1}+\frac{B}{s+3} + \frac{Cs+D}{(s-1)^2}\right\} \\
& \implies A=2,B=3,C=-1 \\
& =2\mathcal L^{-1}\left\{\frac{1}{s-1}\right\} + 3\mathcal L^{-1}\left\{\frac{1}{(s-1)^2}\right\}-\mathcal L^{-1}\left\{\frac{1}{s+3}\right\} \\
& =2e^t+3te^t-e^{-3t}
\end{align*}
### Inverse of differentiable equations
If a function $f$ is continuous on $[0,\infty)$ and its derivative $f'$ is piecewise continuous on $[0,\infty)$, for $s>a$:
$$
\mathcal L\{ f'\}=s\mathcal L\{f\}-f(0) \\
\mathcal L\{ f''\} = s^2\mathcal L\{f\}-s\cdot f(0)-f'(0)
$$
### Solving IVPs
Applying the Laplace transform to both sides of an IVP is valid to remove any traces of horrifying integration.
!!! example
\begin{align*}
y''-y'-2y=0, y(0)=1, y'(0)=0 \\
\mathcal L\{y''-y'-2y\}& =\mathcal L\{0\} \\
s^2\mathcal L\{y\}-s\cdot y(0)-y'(0) - s\mathcal L\{y\} +y(0) - 2\mathcal L\{y\}& =0 \\
\mathcal L\{y\}(s^2-s-2)-s+1& =0 \\
\mathcal L\{y\}& =\frac{s-1}{(s-2)(s+1)} \\
& = \\
\mathcal L^{-1}\{\mathcal L\{y\}\}& =\mathcal L^{-1}\left\{
\frac 1 3\cdot\frac{1}{s-2} + \frac 2 3\cdot\frac{1}{s+1}
\right\} \\
y& =\frac 1 3\mathcal L^{-1}\left\{\frac{1}{s-2}\right\} + \frac 2 3\mathcal L^{-1}\left\{\frac{1}{s+1}\right\} \\
\tag{from Laplace table}& =\frac 1 3 e^{2t} + \frac 2 3 e^{-t}
\end{align*}
### Heaviside / unit step
The Heaviside and unit step functions are identical:
$$
H(t-c)=u(t-c)=u_c(t)=\begin{cases}
0 & t < c \\
1 & t \geq c
\end{cases}
$$
Piecewise continuous functions can be manipulated into a single equation via the Heaviside function.
For a Heaviside transform $\mathcal L\{u_c(t)g(t)\}$, if $g$ is defined on $[0,\infty)$, $c\geq 0$, and $\mathcal L\{g(t+c)\}$ exists for some $s>s_0$:
$$
\mathcal L\{u_c(t)g(t)\}=e^{-sc}\mathcal L\{g(t+c)\},s>s_0
$$
## Resources
- [Laplace Table ](/resources/ece/laplace.pdf )