eifueo/docs/1b/ece108.md

199 lines
6.1 KiB
Markdown
Raw Normal View History

2023-01-09 08:23:07 -05:00
# ECE 108: Discrete Math 1
2023-01-10 13:52:38 -05:00
An **axiom** is a defined core assumption held to be true.
!!! example
True is not false.
A **theorem** is a true statement derived from axioms via logic or other theorems.
!!! example
True or false is true.
A **proposition/statement** must be able to have the property that it is exclusively true or false.
!!! example
The square root of 2 is a rational number.
An **open sentence** becomes a proposition if a value is assigned to the variable.
!!! example
$x^2-x\geq 0$
2023-01-10 11:38:11 -05:00
## Truth tables
2023-01-10 13:52:38 -05:00
A truth table lists all possible **truth values** of a proposition, containing independent **statement variables**.
!!! example
| p | q | p and q |
| --- | --- | --- |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | F |
## Logical operators
!!! definition
- A **compound statement** is composed of **component statements** joined by logical operators AND and OR.
The **negation** operator is equivalent to logical **NOT**.
$$\neg p$$
The **conjunction** operaetor is equivalent to logical **AND**.
$$p\wedge q$$
The **disjunction** operator is equivalent to logical **OR**.
$$p\vee q$$
2023-01-11 12:30:51 -05:00
### Proposation relations
!!! definition
A **tautology** is a statement that is always true, regardless of its statement variables.
2023-01-10 13:52:38 -05:00
The **implication** sign requires that if $p$ is true, $q$ is true, such that *$p$ implies $q$*. The first symbol is the **hypothesis** and the second symbol is the **conclusion**.
$$p\implies q$$
| $p$ | $q$ | $p\implies q$ |
| --- | --- | --- |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | F |
2023-01-11 12:30:51 -05:00
The **inference** sign represents the inverse of the implication sign, such that $p$ **is implied by** $q$. It is equivalent to $q\implies p$.
$$p\impliedby q$$
The **if and only if** sign requires that the two propositions imply each other — i.e., that the state of $p$ is the same as the state of $q$. It is equivalent to $(p\implies q)\wedge (p\impliedby q)$.
$$p\iff q$$
The **logical equivalence** sign represents if the truth values for both statements are **the same for all possible variables**, such that the two are **equivalent statements**.
$$p\equiv q$$
$p\equiv q$ can also be defined as true when $p\iff q$ is a tautology.
!!! warning
$p\equiv q$ is *not a proposition* itself but instead *describes* propositions. $p\iff q$ is the propositional equivalent.
## Common theorems
The **double negation rule** states that if $p$ is a proposition:
$$\neg(\neg p)\equiv p$$
!!! tip "Proof"
Note that:
2023-01-11 12:31:16 -05:00
| $p$ | $\neg p$ | $\neg(\neg p)$ |
2023-01-11 12:30:51 -05:00
| --- | --- | --- |
| T | F | T |
| F | T | F |
Because the truth values of $p$ and $\neg(\neg p)$ for all possible truth values are equal, by definition, it follows that $p\equiv\neg(\neg p)$.
!!! warning
Proofs must include the definition of what is being proven, and any relevant evidence must be used to describe why.
The two **De Morgan's Laws** allow distributing the negation operator in a dis/conjunction if the junction is inverted.
$$
\neg(p\vee q)\equiv(\neg p)\wedge(\neg q) \\
\neg(p\wedge q)\equiv(\neg p)\vee(\neg q)
$$
An implication can be expressed as a disjunction. As long as it is stated, it can used as its definition.
2023-01-10 13:52:38 -05:00
2023-01-11 12:30:51 -05:00
$$p\implies \equiv (\neg p)\vee q$$
Two **converse** propositions imply each other:
$$p\implies q\text{ is the converse of }q\implies p$$
A **contrapositive** is the negatated converse, and is **logically equivalent to the original implication**. This allows proof by contrapositive.
$$\neg p\implies\neg q\text{ is the contrapositive of }q\implies p$$
2023-01-13 11:13:58 -05:00
### Operator laws
Both **AND** and **OR** are commutative.
$$
p\wedge q\equiv q\wedge p \\
p\vee q\equiv q\vee p
$$
Both **AND** and **OR** are associative.
$$
(p\wedge q)\wedge r\equiv p\wedge(q\wedge r) \\
(p\vee q)\vee r\equiv p\vee(q\vee r)
$$
Both **AND** and **OR** are distributive with one another.
$$
p\wedge(q\vee r)\equiv(p\wedge q)\vee(p\wedge r) \\
p\vee(q\wedge r)\equiv(p\vee q)\wedge(p\vee r)
$$
!!! tip "Proof"
$$
\begin{align*}
(\neg p\vee\neg r)\wedge s\wedge\neg t&\equiv\neg(p\wedge r\vee s\implies t) \\
\tag*{definition of implication} &\equiv \neg (p\wedge r\vee[\neg s\vee t]) \\
\tag*{DML} &\equiv\neg(p\wedge r)\wedge\neg[(\neg s)\vee t)] \\
\tag*{DML} &\equiv(\neg p\vee\neg r)\wedge\neg[(\neg t)\vee t] \\
\tag*{DML} &\equiv(\neg p\vee\neg r)\wedge\neg(\neg s)\wedge\neg t \\
\tag*{double negation} &\equiv(\neg p\vee\neg r)\wedge s\wedge\neg t
\end{align*}
$$
### Quantifiers
A **quantified statement** includes a **quantifier**, **variable**, **domain**, and **open sentence**.
$$
\underbrace{\text{for all}}_\text{quantifier}\ \underbrace{\text{real numbers}\overbrace{x}^\text{variable}\geq 5}_\text{domain}, \underbrace{x^2-x\geq 0}_\text{open sentence}
$$
The **universal quantifier** $\forall$ indicates "for all".
$$\forall x\in S,P(x)$$
!!! example
All real numbers greater than or equal to 5, defined as $x$, satisfy the condition $x^2-x\geq 0$.
$$\forall x\in\mathbb R\geq 5,x^2-x\geq 0$$
The **existential quantifier** $\exists$ indicates "there exists at least one".
$$\exists x\in S, P(x)$$
!!! example
There exists at least one real number greater than or equal to 5, defined as $x$, satisfies the condition $x^2-x\geq 0$.
$$\exists x\in\mathbb R\geq 5,x^2-x\geq 0$$
Quantifiers can also be negated and nested. The opposite of "for each ... that satisfies $P(x)$" is "there exists ... that does **not** satisfy $P(x)$".
$$\neg(\forall x\in S,P(x))\equiv\exists x\in S,\neg P(x)$$
Nested quantifiers are **evaluated in sequence**. If the quantifiers are the same, they can be grouped together per the commutative and/or associative laws.
$$\forall x\in\mathbb R,\forall y\in\mathbb R\equiv \forall x,y\in\mathbb R$$
!!! warning
This means that the order of the quantifiers is relevant if the quantifiers are different:
$\forall x\in\mathbb R,\exists y\in\mathbb R,x-y=1$ is **true** as setting $y$ to $x-1$ always fulfills the condition.
$\exists y\in\mathbb R,\forall x\in\mathbb R, x-y=1$ is **false** as when $x$ is selected first, it is impossible for every value of $y$ to satisfy the open sentence.