The **implication** sign requires that if $p$ is true, $q$ is true, such that *$p$ implies $q$*. The first symbol is the **hypothesis** and the second symbol is the **conclusion**.
The **inference** sign represents the inverse of the implication sign, such that $p$ **is implied by** $q$. It is equivalent to $q\implies p$.
$$p\impliedby q$$
The **if and only if** sign requires that the two propositions imply each other — i.e., that the state of $p$ is the same as the state of $q$. It is equivalent to $(p\implies q)\wedge (p\impliedby q)$.
$$p\iff q$$
The **logical equivalence** sign represents if the truth values for both statements are **the same for all possible variables**, such that the two are **equivalent statements**.
$$p\equiv q$$
$p\equiv q$ can also be defined as true when $p\iff q$ is a tautology.
!!! warning
$p\equiv q$ is *not a proposition* itself but instead *describes* propositions. $p\iff q$ is the propositional equivalent.
## Common theorems
The **double negation rule** states that if $p$ is a proposition:
The **universal quantifier** $\forall$ indicates "for all".
$$\forall x\in S,P(x)$$
!!! example
All real numbers greater than or equal to 5, defined as $x$, satisfy the condition $x^2-x\geq 0$.
$$\forall x\in\mathbb R\geq 5,x^2-x\geq 0$$
The **existential quantifier** $\exists$ indicates "there exists at least one".
$$\exists x\in S, P(x)$$
!!! example
There exists at least one real number greater than or equal to 5, defined as $x$, satisfies the condition $x^2-x\geq 0$.
$$\exists x\in\mathbb R\geq 5,x^2-x\geq 0$$
Quantifiers can also be negated and nested. The opposite of "for each ... that satisfies $P(x)$" is "there exists ... that does **not** satisfy $P(x)$".
Nested quantifiers are **evaluated in sequence**. If the quantifiers are the same, they can be grouped together per the commutative and/or associative laws.
This means that the order of the quantifiers is relevant if the quantifiers are different:
$\forall x\in\mathbb R,\exists y\in\mathbb R,x-y=1$ is **true** as setting $y$ to $x-1$ always fulfills the condition.
$\exists y\in\mathbb R,\forall x\in\mathbb R, x-y=1$ is **false** as when $x$ is selected first, it is impossible for every value of $y$ to satisfy the open sentence.