- In a **scalar field**, each point in space is assigned a number. For example, topography or altitude maps are scalar fields.
- A **level curve** is a slice of a three-dimensional graph by setting to a general variable $f(x, y)=k$. It is effectively a series of contour plots set in a three-dimensional plane.
- A **contour plot** is a graph obtained by substituting a constant for $k$ in a level curve.
In practice, this means that if any two paths result in different limits, the limit is undefined. Substituting $x|y=0$ or $y=mx$ or $x=my$ are common solutions.
!!! example
For the function $\lim_{(x, y)\to (0,0)}\frac{x^2}{x^2+y^2}$:
The order of the variables matter: $f_{xy}$ is the derivative of f wrt. x *and then* wrt. y.
**Clairaut's theorem** states that if $f_x, f_y$, and $f_{xy}$ all exist near $(a, b)$ and $f_{yx}$ is continuous **at** $(a,b)$, $f_{yx}(a,b)=f_{x,y}(a,b)$ and exists.
!!! warning
In multivariable calculus, **differentiability does not imply continuity**.
Therefore, the general expression of a plane is equivalent to:
$$
z=C+A(x-a)+B(x-b) \\
\boxed{z=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)}
$$
??? tip "Proof"
The general formula for a plane is $c_1(x-a)+c_2(y-b)+c_3(z-c)=0$.
If $y$ is constant such that $y=b$:
$$z=C+A(x-a)$$
which must represent in the x-direction as an equation in the form $y=b+mx$. It follows that $A=f_x(a,b)$. A similar concept exists for $f_y(a,b)$.
If both $x=a$ and $y=b$ are constant:
$$z=C$$
where $C$ must be the $z$-point.
Usually, functions can be approximated via the **tangent at $x=a$.**
$$f(x)\simeq L(x)$$
!!! warning
Approximations are less accurate the stronger the curve and the farther the point is away from $f(a,b)$. A greater $|f''(a)|$ indicates a stronger curve.
!!! example
Given the function $f(x,y)=\ln(\sqrt[3]{x}+\sqrt[4]{y}-1)$, $f(1.03, 0.98)$ can be linearly approximated.
Linear approximations can be used with the help of differentials. Please see [MATH 117#Differentials](/1a/math117/#differentials) for more information.
$\Delta f$ can be assumed to be equivalent to $df$.
$$\Delta f=f_x(a,b)\Delta x+f_y(a,b)\Delta y$$
Alternatively, it can be expanded in Leibniz notation in the form of a **total differential**:
If the function only depends on one variable, $\frac{d}{dx}$ is used. Multivariable functions must use $\frac{\partial}{\partial x}$ to treat the other variables as constant.