eifueo/docs/1b/ece140.md

26 lines
1.2 KiB
Markdown
Raw Normal View History

2023-01-10 11:38:11 -05:00
# ECE 140: Linear Circuits
## Voltage, current, and resistance
2023-01-10 14:02:44 -05:00
Please see [SL Physics 1#Electric potential](/g11/sph3u7#electric-potential) for more information on voltage.
Please see [SL Physics 1#5.2 - Heating effect of electric currents](/g11/sph3u7/#52-heating-effect-of-electric-currents) for more information on current.
Please see [SL Physics 1#Resistance](/g11/sph3u7/#resistance) for more information on resistance.
**Electric charge** $Q$ quantises the charge of electrons and positive ions, and is expressed in coulombs (**C**).
Objects with charge generate electric fields, thus granting potential energy that is released upon proximity to another charge.
!!! warning
Voltage and current are capitalised in **direct current only** ($V$, $I$). In general use, their lowercase forms should be used instead ($v, $i$).
**Voltage** is related to the change in energy ($dw$) over the change in charge ($dq$), or alternatively through Ohm's law:
$$i=\frac{dw}{dq}=\frac{i}{R}$$
**Current** represents the rate of flow of charge in amps (**A**). Conventional current moves opposite electron flow because old scientists couldn't figure it out properly.
$$i=\frac{dq}{dt}\approx \frac{\Delta q}{\Delta t}$$