The original function **cannot be recovered** from the result of a definite integral unless it is known that $f(x)$ is a constant.
## N-dimensional integrals
Much like how $dx$ represents an infinitely small line, $dx\cdot dy$ represents an infinitely small rectangle. This means that the surface area of an object can be expressed as:
$$dS=dx\cdot dy$$
Therefore, the area of a function can be expressed as:
$$S=\int^x_0\int^y_0 dy\ dx$$
where $y$ is usually equal to $f(x)$, changing on each iteration.
!!! example
The area of a circle can be expressed as $y=\pm\sqrt{r^2-x^2}$. This can be reduced to $y=2\sqrt{r^2-x^2}$ because of the symmetry of the equation.
$$
\begin{align*}
A&=\int^r_0\int^{\sqrt{r^2-x^2}}_0 dy\ dx \\
&=\int^r_0\sqrt{r^2-x^2}\ dx
\end{align*}
$$
!!! warning
Similar to parentheses, the correct integral squiggly must be paired with the correct differential element.
Although differential elements can be blindly used inside and outside an object (e.g., area), the rules break down as the **boundary** of an object is approached (e.g., perimeter). Applying these rules to determine an object's perimeter will result in the incorrect deduction that $\pi=4$.
The **mass distribution** of an object varies depending on its surface density $\rho_s$. In objects with uniformly distributed mass, the surface density is equal to the total mass over the total area.
$$dm=\rho_s\ dS$$
The formula for the **moment of inertia** of an object is as follows, where $r_\perp$ is the distance from the axis of rotation:
If the axis of rotation is perpendicular to the plane of the object, $r_\perp=r$. If the axis is parallel, $r_\perp$ is the shortest distance to the axis. Setting an axis along the axis of rotation is easier.
- The **polarity** of a particle is whether it is positive or negative.
The law of **conservation of charge** states that electrons and charges cannot be created nor destroyed, such that the **net charge in a closed system stays the same**.
The law of **charge quantisation** states that charge is discrete — electrons have the lowest possible quantity.
Please see [SL Physics 1#Charge](/sph3u7/#charge) for more information.
Because Coulomb's law is an experimental law, it does not quite cover all of the nuances of electrostatics. Notably:
- $Q_1$ and $Q_2$ must be point charges, making distributed charges inefficient to calculate, and
- the formula breaks down once charges begin to move (e.g., if a charge moves a lightyear away from another, Coulomb's law says the force changes instantly. In reality, it takes a year before the other charge observes a difference.)
An **electric dipole** is composed of two equal but opposite charges $Q$ separated by a distance $d$. The dipole moment is the product of the two, $Qd$.
The charge experienced by a positive test charge along the dipole line can be reduced to as the ratio between the two charges decreases to the point that they are basically zero:
Compared to Coulomb's law, $Q_1$ creates an electric field around itself — each point in space is assigned a vector that depends on the distance away from the charge. $Q_2$ *interacts* with the field. According to Maxwell, as a charge moves, it emits a wave that carries information to other charges.