From 03888187e47343e41402271febf3434974b12d73 Mon Sep 17 00:00:00 2001 From: eggy Date: Tue, 11 May 2021 17:42:50 -0400 Subject: [PATCH] math: Add cross product --- docs/mcv4u7.md | 54 ++++++++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 50 insertions(+), 4 deletions(-) diff --git a/docs/mcv4u7.md b/docs/mcv4u7.md index 9b914bf..41a0e09 100644 --- a/docs/mcv4u7.md +++ b/docs/mcv4u7.md @@ -388,10 +388,10 @@ $$\vec{u}\bullet\vec{v}=|\vec{u}||\vec{v}|\cos\theta$$ Much like regular multiplication, dot products are: - - communtative — $\vec{u}\bullet\vec{v}=\vec{v}\bullet\vec{u}$ - - distributive over vectors — $\vec{u}\bullet(\vec{v}+\vec{w})=\vec{u}\bullet\vec{v}+\vec{u}\bullet\vec{w}$ - - associative over scalars — $(m\vec{u})\bullet(n\vec{v})=mn(\vec{u}\bullet\vec{v})$ - - $m(\vec{u}\bullet\vec{v})=(mu)\bullet\vec{v}=(mv)\bullet\vec{u}$ + - communtative: $\vec{u}\bullet\vec{v}=\vec{v}\bullet\vec{u}$ + - distributive over vectors: $\vec{u}\bullet(\vec{v}+\vec{w})=\vec{u}\bullet\vec{v}+\vec{u}\bullet\vec{w}$ + - associative over scalars: $(m\vec{u})\bullet(n\vec{v})=mn(\vec{u}\bullet\vec{v})$ + - $m(\vec{u}\bullet\vec{v})=(m\vec{u})\bullet\vec{v}=(mv)\bullet\vec{u}$ When working with algebraic vectors, their dot products are equal to the products of their components. $$\vec{u}\bullet\vec{v}=u_xv_x+u_yv_y$$ @@ -481,6 +481,52 @@ $$ Vector projections are applied in work equations — see [SL Physics 1](/sph3u7/#work) for more information. +### Cross product + +The cross product or **vector product** is a vector that is perpendicular of two vectors that are not colinear. Where $\vec{u}_1,\vec{u}_2,\vec{3}$ represent the x, y, and z coordinates of the position vector $\vec{u}$, respectively: +$$ +\begin{align*} +\vec{u}\times\vec{v}&= +\begin{vmatrix} +\hat{i} & \hat{j} & \hat{k} \\ +\vec{u}_1 & \vec{u}_2 & \vec{u}_3 \\ +\vec{v}_1 & \vec{v}_2 & \vec{v}_3 +\end{vmatrix} \\ +\\ +&=\hat{j}\begin{vmatrix} +\vec{u}_1 & \vec{u}_3 \\ +\vec{v}_1 & \vec{v}_3 +\end{vmatrix} +-\hat{i}\begin{vmatrix} +\vec{u}_2 & \vec{u}_3 \\ +\vec{v}_2 & \vec{v}_3 +\end{vmatrix} ++\hat{k}\begin{vmatrix} +\vec{u}_1 & \vec{u}_2 \\ +\vec{v}_1 & \vec{v}_2 +\end{vmatrix} \\ +\\ +&=[\vec{u}_2\vec{v}_3-\vec{u}_3\vec{v}_2,\vec{u}_3\vec{v}_1-\vec{u}_1\vec{v}_3,\vec{u}_1\vec{v}_2-\vec{u}_2\vec{v}_1] +\end{align*} +$$ + +Cross products are: + + - anti-communtative: $\vec{u}\times\vec{v}=-(\vec{u}\times\vec{v})$ + - distributive: $\vec{u}\times(\vec{u}+\vec{w})=\vec{u}\times\vec{v}+\vec{u}\times\vec{w}$ + - associative over scalars: $m(\vec{u}\times\vec{v})=(m\vec{u})\times\vec{v}=(m\vec{v})\times\vec{u}$ + +The **magnitude** of a cross product is opposite that of the dot product. Where $\theta$ is the smaller angle between the two vectors ($0\leq\theta\leq180^\circ$): +$$|\vec{u}\times\vec{v}|=|\vec{u}||\vec{v}|\sin\theta$$ + +This is also equal to the area of a parallelogram enclosed by the vectors — where one is the base and the other is the adjacent side. + +To determine the **direction** of a cross product, the right-hand rule can be used. Spreading the fingers out: + + - the thumb is the direction of the first vector + - the index finger is the direction of the second vector + - the palm faces the direction of the cross product + ## Resources - [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)