From 0738b692fc7f4b8c73a2e872649caa0a114276d7 Mon Sep 17 00:00:00 2001 From: eggy Date: Thu, 23 Nov 2023 13:57:56 -0500 Subject: [PATCH] ece205: add more complex fouriers --- docs/2a/ece205.md | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/docs/2a/ece205.md b/docs/2a/ece205.md index 5bb7073..c160949 100644 --- a/docs/2a/ece205.md +++ b/docs/2a/ece205.md @@ -490,6 +490,25 @@ To convert it to a real Fouier series: \therefore f(x)&=\sum^\infty_{\substack{n=-\infty \\ n\neq0}}\frac{(-1)^ni}{n\pi}e^{in\pi x} \end{align*} +The Fourier coefficients $c_n$ map to the amplitude spectrum $|c_n|$. **Parseval's theorem** maps the frequency domain ($\{c_n\}$) to and from the time domain ($f(t)$): + +If a 2L-periodic function $f(t)$ has a complex Fourier series $f(t)=\sum^\infty_{n=-\infty}c_ne^{\frac{in\pi x}{L}}$: + +$$\frac{1}{2L}\int^L_{-L}\underbrace{[f(t)]^2}_\text{time domain}dt=\sum^\infty_{n=-\infty}\underbrace{|c_n|^2}_\text{time domain}$$ + +!!! example + For the Sawtooth function, $f(t)=t, -1 < t < 1, f(t+2)=f(t)$: + + \begin{align*} + f(x)&=\sum^\infty_{\substack{n=-\infty \\ n\neq 0}}\frac{ni}{n\pi}e^{in\pi t}+0 \\ + \frac 1 2\int^1_{-1}t^2dt&=\sum^\infty_{\substack{n=-\infty \\ n\neq 0}}\left|\frac{(-1)^ni}{n\pi}\right|^2+|0|^2 \\ + \tag{$\left|\frac{(-1)^ni}{n\pi}\right|=\frac{1}{n\pi}$}\frac 1 3 &=\sum^\infty_{\substack{n=-\infty \\ n\neq 0}}\left(\frac{1}{n\pi}\right)^2 \\ + &=\sum^{-1}_{n=-\infty}\left(\frac{1}{n\pi}\right)^2+\sum^\infty_{n=1}\left(\frac{1}{n\pi}\right)^2 \\ + \tag{$\frac 1 n^2$ sign doesn't matter}&=2\sum^\infty_{n=1}\frac{1}{n^2\pi^2} \\ + \frac 1 3 &=\frac{2}{\pi^2}\sum^\infty_{n=1}\frac{1}{n^2} \\ + \frac{\pi^2}{6}&=\sum^\infty_{n=1}\frac{1}{n^2} + \end{align*} + ## Resources - [Laplace Table](/resources/ece/laplace.pdf)