ece106: attempt flux

This commit is contained in:
eggy 2023-01-28 19:34:26 -05:00
parent 828a653740
commit 094e672245

View File

@ -221,3 +221,30 @@ $$dQ=\rho_s dS$$
4. Create a right-angle triangle with $A$, the desired point, and usually the origin
5. Attempt to find symmetry
6. Solve
## Gauss's law
!!! definition
- A **closed surface** is any closed three-dimensional object.
- **Electric flux** represents the number of electric field lines going through a surface.
At an arbitrary surface, the **normal** to the plane is its vector form:
$$\vec{dS}=\vec n\cdot dS$$
The **electric flux density** $\vec D$ is an alternate representation of electric field strength. In a vacuum:
$$\vec D = \epsilon_0\vec E$$
**Electric flux** is the electric flux density multiplied by the surface area at every point of an object.
$$\phi_e=\epsilon_0\int_s\vec E\bullet\vec{dS}$$
The flux from charges outside a closed surface will **always be zero at the surface**. A point charge in the centre of a closed space has a flux equal to its charge. Regardless of the charge distribution or shape, the **total flux** through a closed surface is equal to the **total charge within** the closed surface.
$$\oint \vec D\bullet\vec{dS}=Q_\text{enclosed}$$
This implies $\phi_e>0$ is a net positive charge enclosed.
!!! warning
Gauss's law only applies when $\vec E$ is from all charges in the system