math119: add related rates and differentials

This commit is contained in:
eggy 2023-01-17 21:30:02 -05:00
parent 9c0f2cd302
commit 0adf85e83c

View File

@ -165,3 +165,54 @@ $$f(x)\simeq L(x)$$
L(x=1.03, y=0.98)=f(1,1)=f_x(1,1)(x-1)+f_y(1,1)(y-1) \\ L(x=1.03, y=0.98)=f(1,1)=f_x(1,1)(x-1)+f_y(1,1)(y-1) \\
f(1.03,0.98)\simeq L(1.03,0.98)=0.005 f(1.03,0.98)\simeq L(1.03,0.98)=0.005
$$ $$
### Differentials
Linear approximations can be used with the help of differentials. Please see [MATH 117#Differentials](/1a/math117/#differentials) for more information.
$\Delta f$ can be assumed to be equivalent to $df$.
$$\Delta f=f_x(a,b)\Delta x+f_y(a,b)\Delta y$$
Alternatively, it can be expanded in Leibniz notation in the form of a **total differential**:
$$df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$$
??? tip "Proof"
The general formula for a plane in three dimensions can be expressed as a tangent plane if the differential is small enough:
$$f(x,y)=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(x-b)$$
As $\Delta f=f(x,y)-f(a,b)$, $\Delta x=x-a$, and $\Delta y=y-b$, it can be assumed that $\Delta x=dx,\Delta y=dy, \Delta f\simeq df$.
$$\boxed{\Delta f\simeq df=f_x(a,b)dx+f_y(a,b)dy}$$
### Related rates
Please see [SL Math - Analysis and Approaches 1](/g11/mhf4u7/#related-rates) for more information.
!!! example
For the gas law $pV=nRT$, if $T$ increases by 1% and $V$ increases by 3%:
\begin{align*}
pV&=nRT \\
\ln p&=\ln nR + \ln T - \ln V \\
\tag{multiply both sides by $d$}\frac{d}{dp}\ln p(dp)&=0 + \frac{d}{dT}\ln T(dt)-\frac{d}{dV}\ln V(dV) \\
\frac{dp}{p} &=\frac{dT}{T}-\frac{dV}{V} \\
&=0.01-0.03 \\
&=-2\%
\end{align*}
### Parametric curves
Because of the existence of the parameter $t$, these expressions have some advantages over scalar equations:
- the direction of $x$ and $y$ can be determined as $t$ increases, and
- the rate of change of $x$ and $y$ relative to $t$ as well as each other is clearer
$$
\begin{align*}
f(x,y,z)&=\begin{bmatrix}x(t) \\ y(t) \\ z(t)\end{bmatrix} \\
&=(x(t), y(t), z(t))
\end{align*}
$$