diff --git a/docs/ce1/math117.md b/docs/ce1/math117.md index 3e03e37..b4585e5 100644 --- a/docs/ce1/math117.md +++ b/docs/ce1/math117.md @@ -43,7 +43,7 @@ If a function is not invertible, restricting the domain may allow a **partial in By restricting the domain to $[0,\inf]$, the **multivalued inverse function** $y=\pm\sqrt{x}$ is reduced to just the partial inverse $y=\sqrt{x}$. ## Symmetry - +78u7u887878 An **even function** satisfies the property that $f(x)=f(-x)$, indicating that it is unchanged by a reflection across the y-axis. An **odd function** satisfies the property that $-f(x)=f(-x)$, indicating that it is unchanged by a 180° rotation about the origin. @@ -70,3 +70,133 @@ $$ \sinh x = \frac{1}{2}(e^x - e^{-x}) $$ +## Piecewise functions + +A piecewise function is one that changes formulae at certain intervals. To solve piecewise functions, each of one's intervals should be considered. + +### Absolute value function + +$$ +\begin{align*} +|x| = \begin{cases} +x &\text{ if } x\geq 0 \\ +-x &\text{ if } x < 0 +\end{cases} +\end{align*} +$$ + +### Signum function + +The signum function returns the sign of its argument. + +$$ +\begin{align*} +\text{sgn}(x)=\begin{cases} +-1 &\text{ if } x < 0 \\ +0 &\text{ if } x = 0 \\ +1 &\text{ if } x > 0 +\end{cases} +\end{align*} +$$ + +### Ramp function + +The ramp function makes a ramp through the origin that suddenly flatlines at 0. Where $c$ is a constant: + +$$ +\begin{align*} +r(t)=\begin{cases} +0 &\text{ if } x \leq 0 \\ +ct &\text{ if } x > 0 +\end{cases} +\end{align*} +$$ + +(Source: Wikimedia Commons, public domain) + +### Floor and ceiling functions + +The floor function rounds down. +$$\lfloor x\rfloor$$ + +The ceiling function rounds up. +$$\lceil x \rceil$$ + +### Fractional part function + +In a nutshell, the fractional part function: + + - returns the part **after the decimal point** if the number is positive + - returns 1 - **the part after the decimal point** if the number is negative + +$$\text{FRACPT}(x) = x-\lfloor x\rfloor$$ + +Because this function is periodic, it can be used to limit angles to the $[0, 2\pi)$ range with: +$$f(\theta) = 2\pi\cdot\text{FRACPT}\biggr(\frac{\theta}{2\pi}\biggr)$$ + +### Heaviside function + +The Heaviside function effectively returns a boolean whether the number is greater than 0. +$$ +\begin{align*} +H(x) = \begin{cases} +0 &\text{ if } t < 0 \\ +1 &\text{ if } t \geq 0 +\end{cases} +\end{align*} +$$ + +This can be used to construct other piecewise functions by enabling them with $H(x-a)$ as a factor, where $a$ is the interval. + +In a nutshell: + + - $1-H(t-a)$ lets you "turn a function off" at at $t=a$ + - $H(t-a)$ lets you "turn a function on at $t=a$ + - $H(t-a) - H(t-b)$ leaves a function on in the interval $(a, b)$ + +!!! example + TODO: example for converting piecewise to heaviside via collecting heavisides + + and vice versa + +## Periodicity + +The function $f(t)$ is periodic only if there is a repeating pattern, i.e. such that for every $x$, there is an $f(x) = f(x + nT)$, where $T$ is the period and $n$ is any integer. + +### Circular motion + +Please see [SL Physics 1#6.1 - Circular motion](/g11/sph3u7/#61-circular-motion) and its subcategory "Angular thingies" for more information. + +## Partial function decomposition (PFD) + +In order to PFD: + +1. Factor the denominator into irreducibly quadratic or linear terms. +2. For each factor, create a term. Where capital letters below are constants: + - A linear factor $Bx+C$ has a term $\frac{A}{Bx+C}$. + - A quadratic factor $Dx^2+Ex+G$ has a term $\frac{H}{Dx^2+Ex+G}$. +3. Set the two equal to each other such that the denominators can be factored out. +4. Create systems of equations to solve for each constant. + +!!! example + To decompose $\frac{x}{(x+1)(x^2+x+1)}$: + $$ + \begin{align*} + \frac{x}{(x+1)(x^2+x+1)} &= \frac{A}{x+1} + \frac{Bx+C}{x^2+x+1} \\ + &= \frac{A(x^2+x+1) + (Bx+C)(x+1)}{(x+1)(x^2+x+1)} \\ + x &= A(x^2+x+1) + (Bx+C)(x+1) \\ + 0x^2 + x + 0 &= (Ax^2 + Bx^2) + (Ax + Bx + Cx) + (A + C) \\ + \\ + &\begin{cases} + 0 = A + B \\ + 1 = A + B + C \\ + 0 = A + C + \end{cases} + \\ + A &= -1 \\ + B &= 1 \\ + C &= 1 \\ + \\ + ∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1} + \end{align*} + $$