From 0eadea157d9c3bf04bb9a6a1a0ecde7b3d7f1ef6 Mon Sep 17 00:00:00 2001 From: eggy Date: Sat, 18 Feb 2023 17:37:38 -0500 Subject: [PATCH] math119: add cylindrical, spherical coords --- docs/1b/math119.md | 46 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 46 insertions(+) diff --git a/docs/1b/math119.md b/docs/1b/math119.md index 4c8cf1c..3e9dd4a 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -589,3 +589,49 @@ The **total quantity** if $f$ represents density is: $$T=\iiint_Ef(x,y,z)dV$$ +### Cylindrical coordinates + +Cylindrical coordinates are effectively polar coordinates with a height. + +$$ +x=\rho\cos\phi \\ +y=\rho\sin\phi \\ +z=z +$$ + +$$ +\rho=\sqrt{x^2+y^2} \\ +\tan\phi=\frac y x +$$ + +The Jacobian is still $\rho$. + +!!! example + For the volume under $z=9-x^2-y^2$, outside $x^2+y^2=1$, and above the $xy$ plane: + + - $0\leq z\leq 9-x^2-y^2\implies 0\leq z\leq 9-\rho^2$ + - $1\leq \rho\leq 3$ + - $0\leq \phi\leq 2\pi$ + + $$ + \int^3_1\int^{2\pi}_0\int^{9-\rho^2}_0\rho\ dz\ d\rho\ d\phi =32\pi + $$ + +### Spherical coordinates + +Where $r$ is the direct distance from the point to the origin, $\phi$ is the angle to the x-axis in the xy-plane ($[0,2\pi]$), and $\theta$ is the angle to the z-axis, top to bottom ($[0,\pi]$): + +$$ +z=r\cos\theta \\ +x=r\sin\theta\cos\phi \\ +y=r\sin\theta\sin\phi +$$ + +The Jacobian is $r^2\sin\theta$. + +!!! example + The mass inside the sphere $x^2+y^2+z^2=9$ with density $z=\sqrt{\frac{x^2+y^2}{3}}$: + + It is clear that $\tan\theta=\sqrt 3\implies\theta=\frac\pi 3,r=3$. Thus: + + $$\int^3_0\int^{\pi/3}_0,\int^{2\pi}_0 \frac{\rho}{\sqrt{3}}\rho\ d\phi\ d\theta\ d\rho=\frac{243\pi}{5}$$