diff --git a/docs/1b/math119.md b/docs/1b/math119.md index 3af5fca..caf6c43 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -467,16 +467,97 @@ If the Jacobian contains $x$ and/or $y$ terms: - they can be substituted into the integral directly, praying that the terms all cancel out - or $x$ and $y$ can be written in terms of $u$ and $v$ and then all substituted +!!! example + For the volume within $x^2y^2\sqrt{1-x^3-y^3}$ bounded by $x=0,y=0,x^3+y^3=1$: + + By graphical inspection, the bounds can be determined to be $x=0,y=0, y^3=x^3-1,x=1$. + + Let $u=x^3,du=3x^2dx$. Let $v=y^3,dv=3y^2dy$. The bounds change to $0\leq u\leq 1,0\leq v\leq 1-u$. + + \begin{align*} + \int^1_0\int^{1-u}_0\frac 1 9\sqrt{1-u-v}\ dudv &= \int^1_0\frac{2}{27}(1-v-u)^{3/2}\biggr|^{1-u}_0du \\ + &= \int^1_0\frac{2}{27}(1-u)^{3/2}du \\ + &= \frac{4}{135}(1-u)^{5/2}\biggr|^1_0 \\ + &= \frac{4}{135} + \end{align*} + ### Applications of multiple integrals The area enclosed within bounds $R$ is the volume with a height of 1. $$A_R=\iint_R 1\ dA$$ +!!! example + For the area between $y=(x-1)^2$ and $y=5-(x-2)^2$: + + POI: $x^2-3x=0,\therefore x=0, 3$ + + + \begin{align*} + \int^3_0\int^{5-(x-2)^2}_{(x-1)^2}dydx &=\int^3_0(5-(x-2)^2-(x-1)^2)dx \\ + &=\int^3_0(-2x^2+6x)dx \\ + &=-\frac 2 3x^3+3x^2\biggr|^3_0 \\ + &=9 + \end{align*} + +!!! example + For the area of $\left(\frac x a\right)^2+\left(\frac y b\right)^2=1$ in the region $a,b>0$: + + **For ellipses of this form, a direct substitution to $a\rho\cos\phi$ and $b\rho\cos\phi$ is fastest.** + + Let $u=\frac x a$ and $v=\frac y b$. + + $$ + \frac{\partial(x,y)}{\partial(u,v)}=\det\begin{bmatrix} + a & 0 \\ + 0 & b + \end{bmatrix}=ab + $$ + + Thus $A=\iint_Rab\ du\ dv$. + + Let $u=\rho\cos\phi,v=\rho\sin\phi$. Radius is 1 by inspection. + + \begin{align*} + A&=\int^{2\pi}_0\int^1_0ab\rho\ d\rho\ d\phi \\ + &=\int^{2\pi}\frac 1 2 ab\ d\phi \\ + &=\frac 1 2 ab\phi\biggr|^{2\pi}_0 \\ + &=\pi ab + \end{align*} + The average value of the function $f(x,y)$ over a region $R$, where $A_R$ is the area of the region: $$\overline{f}_R=\frac{1}{A_R}\iint_Rf(x,y) dA$$ +!!! example + The average value of $x^2+y^2$ over $x=0,x=1, y=x$: + + \begin{align*} + \text{avg}&=\frac 1 A\int^1_0\int^x_0(x^2+y^2)dydx \\ + &=2\int^1_0(x^2y+\frac 1 3y^3)\biggr|^x_0dx \\ + &=2\int^1_0\frac 4 3 x^3dx \\ + &=\frac 2 3 x^4 \biggr|^1_0 \\ + &=\frac 2 3 + \end{align*} + The total "amount" of within a region, if $f(x,y)$ describes the density at point $(x,y)$: $$\iint_R f(x,y)dA$$ + +!!! example + The total of $x^2+y^2$ with density $\sigma=\sqrt{1-x^2-y^2}$: + + Let $x^2=\rho\cos\phi,y^2=\rho\sin\phi$. Thus $\sigma=\sqrt{1-\rho^2}$. + + \begin{align*} + M&=\int^{2\pi}_0\int^1_0\sqrt{1-\rho^2}\rho\ d\rho\ d\phi \\ + &=\int^{2\pi}_0d\phi\int^1_0\sqrt{1-\rho^2}\ d\rho\ d\phi \\ + \end{align*} + + Let $u=1-\rho^2$. Thus $du=-2\rho\ d\rho$. + + \begin{align*} + m&=2\pi\int^1_0-\frac 1 2\sqrt u du \\ + &=\frac 2 3u^{3/2}du\biggr|^1_0 \\ + &=\frac 2 3\pi + \end{align*}