From 10e29580cc679478bce518e49091956ea8964bdb Mon Sep 17 00:00:00 2001 From: eggy Date: Sat, 19 Nov 2022 01:07:43 -0500 Subject: [PATCH] math117: add improper integrals --- docs/ce1/math117.md | 60 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 60 insertions(+) diff --git a/docs/ce1/math117.md b/docs/ce1/math117.md index 1f101d9..51c88a3 100644 --- a/docs/ce1/math117.md +++ b/docs/ce1/math117.md @@ -641,3 +641,63 @@ For curves bounded by functions of $y$: $$L(y)=\int^b_a\sqrt{1+\left(\frac{dx}{dy}\right)^2\ dy}$$ ### Solids of revolution + +### Improper integrals + +An improper integral is a definite integral where only one bound is defined: + +!!! example + $\int_2^\infty$ or $\int_a^b$, where only $a$ is defined. + +These can be expanded into limits: + +$$\int_a^\infty f(x)\ dx = \lim_{t\to\infty}\int_a^t f(x)\ dx$$ + +The integral converges to a value if the limit exists. + +$$\int_{-\infty}^a f(x)\ dx = \lim_{t\to-\infty}\int^a_tf(x)\ dx$$ + +Discontinuities can be simply dodged. If there is a discontinuity: + +- at $b$: $\int_a^{b^-}f(x)\ dx$ +- at $a$: $\int_{a^+}^b f(x)\ dx$ +- at $a