math: add trig derivative
This commit is contained in:
parent
853c9be9ad
commit
121ae33dd8
@ -531,6 +531,27 @@ $$f´(x) = g´(h(x)) · h´(x)$$
|
||||
$$f(x) = (4x^2-3x+1)^7$$
|
||||
$$f´(x) = 7(4x^2-3x+1)^6 (8x-3)$$
|
||||
|
||||
### Trigonometric derivative rules
|
||||
|
||||
$$
|
||||
\frac{d}{dx}\sin x = \cos x \\
|
||||
\frac{d}{dx}\cos x = -\sin x \\
|
||||
$$
|
||||
|
||||
These primary derived rules can be used to further derive the derivatives of the other trignometric ratios:
|
||||
$$
|
||||
\frac{d}{dx}\tan x = \sec^2 x \\
|
||||
\frac{d}{dx}\csc x = -\csc x\cdot\cot x \\
|
||||
\frac{d}{dx}\sec x = \sec x\cdot\tan x
|
||||
$$
|
||||
|
||||
The **chain rule** applies to trigonometric functions and will be applied recursively if needed.
|
||||
|
||||
!!! example
|
||||
$$\frac{d}{dx}[\sin g(x)]^n = n[\sin g(x)]^{n-1}\cdot\cos x\cdot g´(x)$$
|
||||
|
||||
Trigonometric identities are not polynomial so values on an interval need to be determined by substituting values between vertical asymptotes and critical points.
|
||||
|
||||
### Higher order derivatives
|
||||
|
||||
The **second derivative** of $f(x)$ is the derivative of the first derivative of $f(x)$, that is, $f´´(x)$.
|
||||
|
Loading…
Reference in New Issue
Block a user