diff --git a/docs/ce1/math115.md b/docs/ce1/math115.md index fd4d05f..a59db85 100644 --- a/docs/ce1/math115.md +++ b/docs/ce1/math115.md @@ -385,3 +385,98 @@ Each variable $x_n$ is a **leading variable** if there is a leading entry in $A$ !!! example TODO: LEARN example + +### Matrix-vector product + +In an augmented matrix, the system is consistent **if and only if** the resultant vector is a linear combination of the columns of the coefficient matrix. + +$$\text{system is consistent}\iff\vec b = A\vec x$$ + +Where $\vec x$ is $\colv{x_1 \\ x_2 \\ ...}$ and $\vec a_n$ is the column vector of $A$ at $n$: + +$$A\vec x = \vec a_1x_1 + \vec a_2x_2 + ... + \vec a_nx_n$$ + +**Alternatively**, the matrix-vector product can be considered a dot product such that where $\vec r_1, \vec r_2, ...$ are the rows of $A$: + +$$A\vec x = \vec b = \colv{\vec r_1\bullet\vec x \\ \vec r_2\bullet\vec x \\ ... \\ \vec r_n\bullet\vec x}$$ + +!!! warning + - $A$ must be $m\times n$. + - $\vec x$ must be in $\mathbb R^n$ (number of columns) + - $\vec b$ must be in $\mathbb R^m$ (number of rows) + +!!! example + The system below: + + $$ + \begin{align*} + &x_1 &+ &3x_2 &- &2x_3 &= &-7 \\ + -&x_1 &- &4x_2 &+ &3x_3 &= &8 + \end{align*} + $$ + + is equivalent to the augmented matrix: + $$ + \left[\begin{array}{rrr | r} + 1 & 3 & -2 & -7 \\ + -1 & -4 & 3 & 8 + \end{array}\right] + $$ + + which is consistent if and only if, where $\vec{a_1}, \vec{a_2}, \vec{a_3}$ are the column vectors of $A$: + + $$ + \begin{align*} + \vec b = \colv{-7 \\ 8} &= x_1\colv{1 \\ -1} + x_2\colv{3 \\ -4} + x_3 \colv{-2 \\ 3} \\ + &= x_a\vec{a_1} + x_2\vec{a_2} + x_3\vec{a_3} + \end{align*} + $$ + +The matrix-vector product is distributive, so the following properties are true. + +- $A(\vec x + \vec y) = A\vec x + A\vec y$ +- $(A+B)\vec x = A\vec x + B\vec x$ +- $A(c\vec x) = cA\vec x$ + +### Identity matrices + +In a **homogeneous system** ($\vec b = \vec 0$), any linear combinations of the solutions to the system ($\vec x_1, ... \vec x_n$) are also solutions to the system. + +The identity matrix ($I_n$) is a **square matrix** of size $n$ with the value 1 along the main diagonal and 0 everywhere else. The $i$th column is equal to the $i$th row, which is known as $\vec e_i$. + +$$ +\begin{align*} +I_4 &= \left[\begin{array}{rrrr} +1 & 0 & 0 & 0 \\ +0 & 1 & 0 & 0 \\ +0 & 0 & 1 & 0 \\ +0 & 0 & 0 & 1 +\end{array}\right] \\ +&= [\begin{array}{} \vec e_1 & \vec e_2 & \vec e_3 & \vec e_4\end{array}] +\end{align*} +$$ + +## Matrix equality + +Matrices are only equal if *every* possible linear combination is equal ($A\vec x = B\vec x$ **does not mean** $A = B$). + +If $A\vec x = B\vec x$ for every $\vec x\in \mathbb R^n$, then $A = B$. This can be proven using the identity matrix: + +$$ +\text{Since }A\vec e_i = B\vec e_i \text{ for }i = 1, ... n: \\ +A\vec e_i = \vec a_i, B\vec e_i = \vec b_i \\ +∴ \vec a_i = \vec b_i\text{ for } i=1, ... n,\text{ thus } A=B. +$$ + +## Flow + +!!! definition + - A **network** is a system of junctions connected by directed lines, similar to a directed graph. + +In a **junction**, the flow in must equal the flow out. A network that follows the junction rule is at **equilibrium**. + +In an electrical diagram, if a reference direction is selected, flow going opposite the reference direction is negative. + +Matrices can be applied by applying the junction rule to systems with equal flow in and flow out for each of the **smaller systems** (i.e., not trying to meet every point) + +