math: use actual chain rule
This commit is contained in:
parent
2e001e7e7b
commit
236821d1ff
@ -494,8 +494,8 @@ $$f´(x) = \frac{g´(x)h(x)-g(x)h´(x)}{[h(x)]^2}, h(x) ≠ 0$$
|
|||||||
$$f´(x) = \frac{2(x-1) - (2x+5)·1}{(x-1)^2}$$
|
$$f´(x) = \frac{2(x-1) - (2x+5)·1}{(x-1)^2}$$
|
||||||
$$f´(x) = -\frac{7}{(x-1)^2}$$
|
$$f´(x) = -\frac{7}{(x-1)^2}$$
|
||||||
|
|
||||||
The **mini chain rule** (to be replaced by the actual chain rule) applies to all functions of the form $f(x) = [g(x)]^n$ such that:
|
The **chain rule** applies to all functions of the form $f(x) = g(h(x))$ such that:
|
||||||
$$f´(x) = n[g(x)]^{n-1}·g´(x)$$
|
$$f´(x) = g´(h(x)) · h´(x)$$
|
||||||
|
|
||||||
??? example
|
??? example
|
||||||
$$f(x) = (4x^2-3x+1)^7$$
|
$$f(x) = (4x^2-3x+1)^7$$
|
||||||
|
Loading…
Reference in New Issue
Block a user