math117: add inverse trig
This commit is contained in:
parent
1b10f62162
commit
2b88e631ee
@ -251,3 +251,57 @@ $$
|
||||
\sin^2\theta = \frac{1}{2}(1-\cos2\theta)
|
||||
$$
|
||||
|
||||
### Inverse trig functions
|
||||
|
||||
Because extending the domain does not pass the horizontal line test, for engineering purposes, inverse sine is only the inverse of sine so long as the angle is within $[-\frac{\pi}{2}, \frac{\pi}{2}]$. Otherwise, it is equal to that version mod 2 pi.
|
||||
|
||||
$$y=\sin^{-1}x \iff x=\sin y, y\in [-\frac{\pi}{2}, \frac{\pi}{2}]$$
|
||||
|
||||
This means that $x\in[-1, 1]$.
|
||||
|
||||
$$
|
||||
\sin(\sin^{-1}x) = x \\
|
||||
\sin^{-1}(\sin x) = x \text{ only if } x\in[-\frac{\pi}{2}, \frac{\pi}{2}]
|
||||
$$
|
||||
|
||||
Similarly, inverse **cosine** only returns values within $[0,\pi]$.
|
||||
|
||||
Similarly, inverse **tangent** only returns values within $(-\frac{\pi}{2}, \frac{\pi}{2})$. However, $\tan^{-1}$ is defined for all $x\in\mathbb R$.
|
||||
|
||||
Although most of the reciprocal function rules can be derived, secant is only valid in the odd range $[-\pi, -\frac{\pi}{2})\cup [0, \frac{\pi}{2})$, and returns values $(-\infty, -1]\cup [1, \infty)$.
|
||||
|
||||
### Electrical signals
|
||||
|
||||
Waves are commonly presented in the following format, where $A$ is a **positive** amplitude:
|
||||
|
||||
$$g(t)=A\sin(\omega t + \alpha)$$
|
||||
|
||||
In general, if given a sum of a sine and cosine:
|
||||
|
||||
$$a\sin\omega t + b\cos\omega t = \sqrt{a^2 + b^2}\sin(\omega t + \alpha)$$
|
||||
|
||||
The sign of $\alpha$ should be determined via its quadrant via the signs of $a$ (sine) and $b$ (cosine) via the CAST rule.
|
||||
|
||||
!!! example
|
||||
Given $y=5\cos 2t - 3\sin 2t$:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
A\sin (2t+\alpha) &= A\sin 2t\cos\alpha + A\cos 2t\sin\alpha \\
|
||||
&= (A\cos\alpha)\sin 2t + (A\sin\alpha)\cos 2t \\
|
||||
\\
|
||||
\begin{cases}
|
||||
A\sin\alpha = 5 \\
|
||||
A\cos\alpha = -3
|
||||
\end{cases}
|
||||
\\
|
||||
\\
|
||||
A^2\sin^2\alpha + A^2\cos^2\alpha &= 5^2 + (-3)^2 \\
|
||||
A^2 &= 34 \\
|
||||
A &= \sqrt{34} \\
|
||||
\\
|
||||
\alpha &= \tan^{-1}\frac{5}{3} \\
|
||||
&\text{since sine is positive and cosine is negative, the angle is in Q3} \\
|
||||
∴ \alpha &= \tan^{-1}\frac{5}{3} + \pi
|
||||
\end{align*}
|
||||
$$
|
||||
|
Loading…
Reference in New Issue
Block a user