math117: add inverse trig

This commit is contained in:
eggy 2022-10-11 21:33:14 -04:00
parent 1b10f62162
commit 2b88e631ee

View File

@ -251,3 +251,57 @@ $$
\sin^2\theta = \frac{1}{2}(1-\cos2\theta)
$$
### Inverse trig functions
Because extending the domain does not pass the horizontal line test, for engineering purposes, inverse sine is only the inverse of sine so long as the angle is within $[-\frac{\pi}{2}, \frac{\pi}{2}]$. Otherwise, it is equal to that version mod 2 pi.
$$y=\sin^{-1}x \iff x=\sin y, y\in [-\frac{\pi}{2}, \frac{\pi}{2}]$$
This means that $x\in[-1, 1]$.
$$
\sin(\sin^{-1}x) = x \\
\sin^{-1}(\sin x) = x \text{ only if } x\in[-\frac{\pi}{2}, \frac{\pi}{2}]
$$
Similarly, inverse **cosine** only returns values within $[0,\pi]$.
Similarly, inverse **tangent** only returns values within $(-\frac{\pi}{2}, \frac{\pi}{2})$. However, $\tan^{-1}$ is defined for all $x\in\mathbb R$.
Although most of the reciprocal function rules can be derived, secant is only valid in the odd range $[-\pi, -\frac{\pi}{2})\cup [0, \frac{\pi}{2})$, and returns values $(-\infty, -1]\cup [1, \infty)$.
### Electrical signals
Waves are commonly presented in the following format, where $A$ is a **positive** amplitude:
$$g(t)=A\sin(\omega t + \alpha)$$
In general, if given a sum of a sine and cosine:
$$a\sin\omega t + b\cos\omega t = \sqrt{a^2 + b^2}\sin(\omega t + \alpha)$$
The sign of $\alpha$ should be determined via its quadrant via the signs of $a$ (sine) and $b$ (cosine) via the CAST rule.
!!! example
Given $y=5\cos 2t - 3\sin 2t$:
$$
\begin{align*}
A\sin (2t+\alpha) &= A\sin 2t\cos\alpha + A\cos 2t\sin\alpha \\
&= (A\cos\alpha)\sin 2t + (A\sin\alpha)\cos 2t \\
\\
\begin{cases}
A\sin\alpha = 5 \\
A\cos\alpha = -3
\end{cases}
\\
\\
A^2\sin^2\alpha + A^2\cos^2\alpha &= 5^2 + (-3)^2 \\
A^2 &= 34 \\
A &= \sqrt{34} \\
\\
\alpha &= \tan^{-1}\frac{5}{3} \\
&\text{since sine is positive and cosine is negative, the angle is in Q3} \\
∴ \alpha &= \tan^{-1}\frac{5}{3} + \pi
\end{align*}
$$