From 34c1d204613bced3a081b3784b1d7cdfa1825bc7 Mon Sep 17 00:00:00 2001 From: eggy Date: Tue, 28 Nov 2023 13:34:03 -0500 Subject: [PATCH] ece205: complete course! --- docs/2a/ece205.md | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/docs/2a/ece205.md b/docs/2a/ece205.md index 595a7ab..ec73f3c 100644 --- a/docs/2a/ece205.md +++ b/docs/2a/ece205.md @@ -542,6 +542,10 @@ $$\int^\infty_{-\infty}[f(t)]^2dt=\frac{1}{2\pi}\int^\infty_{-\infty}|\hat f(\om - FT/IFT are linear: $\mathcal F\{af+bg\}=a\mathcal F\{f\}+b\mathcal F\{g\}$ - FT is scalable: $\mathcal F\{f(ax)\}=\frac 1 a\hat f\left(\frac{\omega}{a}\right)$ +- FT can shift frequencies: $\mathcal F\{e^{iax}f(x)\}=\hat f(\omega-a)$ +- FT can shift time: $\mathcal F\{f(x-a)\}=e^{ia\omega}\hat f(\omega)$ +- If the IFT is applicable: $\mathcal F\{f^{(n)}(x)\}=(i\omega)^n\hat f(\omega)$ +- The FT is symmetrical: $\mathcal F\{\hat f(x)\}=2\pi f(-\omega)$ ## Resources