ece106: add magnets
This commit is contained in:
parent
a0e6ab0c32
commit
36e02fb3df
@ -517,3 +517,108 @@ Much like VIR, it's usually easier to work with the form of the equation that ha
|
|||||||
$$U_e=\frac 1 2 \frac {Q^2}{C}=\frac 1 2 QV$$
|
$$U_e=\frac 1 2 \frac {Q^2}{C}=\frac 1 2 QV$$
|
||||||
|
|
||||||
Adding dielectrics increases capacitance but decrease stored energy.
|
Adding dielectrics increases capacitance but decrease stored energy.
|
||||||
|
|
||||||
|
## Magnetism
|
||||||
|
|
||||||
|
All magnetic field lines are closed, i.e., they all return to the same magnetic object, much like a dipole. All lines must be perpendicular to the surface:
|
||||||
|
|
||||||
|
$$\oint\vec B\bullet\vec{dS}=0$$
|
||||||
|
|
||||||
|
Per **Biot-Savart's law**, magnets are complicated.
|
||||||
|
|
||||||
|
$$\boxed{d\vec B_p=\frac{\mu_0}{4\pi}I\frac{\vec {dl}\times\hat r}{|r|^2}}$$
|
||||||
|
|
||||||
|
where:
|
||||||
|
|
||||||
|
- $\mu_0$ is the magnetic permeability of free space
|
||||||
|
- $\hat r$ is the unit vector pointing from an arbitrary point of a wire to the desired point
|
||||||
|
- $I$ is current
|
||||||
|
- $dl$ follows the direction of current
|
||||||
|
|
||||||
|
The final direction can be determined in advance with the **right-hand rule**. Therefore, magnitude can be reduced to:
|
||||||
|
|
||||||
|
$$|dl\times\hat r|=|dl||\hat r|\sin\theta=|dl|\sin\theta$$
|
||||||
|
|
||||||
|
### Calculations
|
||||||
|
|
||||||
|
1. Define coordinate system
|
||||||
|
2. Go to some arbitrary point $A$ on a coordinate axis such that $r=AP$
|
||||||
|
3. Determine magnitude of the cross product
|
||||||
|
4. Determine final magnetic field direction (should be constant)
|
||||||
|
5. Rewrite equation in terms of one variable (usually $\theta$)
|
||||||
|
6. Integrate
|
||||||
|
|
||||||
|
### Selenoids
|
||||||
|
|
||||||
|
It's easiest to place the origin at the target point.
|
||||||
|
|
||||||
|
A selenoid with $N$ turns around a coil of length $L$ has density $n$, and has parallel electric fields inside.
|
||||||
|
|
||||||
|
$$n=\frac N L$$
|
||||||
|
|
||||||
|
The effective current of a selenoid for magnetic purposes is the sum of all currents.
|
||||||
|
|
||||||
|
$$\boxed{I_{eff}=ndzI}$$
|
||||||
|
|
||||||
|
where:
|
||||||
|
|
||||||
|
- $dz$ is the axis in the direction of current
|
||||||
|
- $I$ is current
|
||||||
|
|
||||||
|
This can be substituted directly into Biot-Savart's law, although definite integration should be done **in the direction of the axis** (from the desired point to the farthest point of the selenoid).
|
||||||
|
|
||||||
|
### Velocity and current
|
||||||
|
|
||||||
|
Biot-Savart's law can be applied to moving charges:
|
||||||
|
|
||||||
|
$$I\cdot \vec{dl}=\frac{dq\cdot dl}{dt}=dq\cdot \vec v$$
|
||||||
|
|
||||||
|
### Ampere's law
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- **Drift velocity** is the average speed of electrons through a material.
|
||||||
|
|
||||||
|
The **current density** $\vec J$ is the amount of charge per unit time that flows through a unit area of a cross section.
|
||||||
|
|
||||||
|
$$\boxed{\vec J=nq\vec u=\rho_v\vec u}$$
|
||||||
|
|
||||||
|
where:
|
||||||
|
|
||||||
|
- $\vec u$ is drift velocity
|
||||||
|
- $n$ is the charge per unit volume
|
||||||
|
- $q$ is the total charge
|
||||||
|
|
||||||
|
Ohmic resistors have current density proportional to electric field by a material's **conductivity** $\sigma$.
|
||||||
|
|
||||||
|
$$\vec J=\sigma\vec E$$
|
||||||
|
|
||||||
|
Resistivity is related to conductivity: $\rho=\frac 1\sigma$
|
||||||
|
|
||||||
|
Integrating over a cross section returns current:
|
||||||
|
|
||||||
|
$$\boxed{I=\oint\vec J\bullet\vec{dS}}$$
|
||||||
|
|
||||||
|
**Ampere's law** asserts that magnetic flux due to all currents is equal to current enclosed inside a closed boundary/loop.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\boxed{\begin{align*}
|
||||||
|
\oint\vec B\bullet\vec{dl}&=\mu_0I_{enc} \\
|
||||||
|
&=\mu_0\oint\vec J\bullet\vec{dS}
|
||||||
|
\end{align*}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
where:
|
||||||
|
|
||||||
|
- $dl$ is the line along the loop/boundary in an arbitrary direction
|
||||||
|
- $I_{enc}$ is the sum of all enclosed currents
|
||||||
|
|
||||||
|
$dl$ (along the loop) and $dS$ are related in direction with each other per the **right hand rule**.
|
||||||
|
|
||||||
|
For each enclosed $I$, if its direction is:
|
||||||
|
|
||||||
|
- the same as $\vec dS$, it is positive in the sum term
|
||||||
|
- opposite $\vec dS$, it is negative in the sum term
|
||||||
|
|
||||||
|
1. Use $dl$ to find $dS$ or vice versa
|
||||||
|
2. Determine $I_{enc}$
|
||||||
|
3. Solve
|
||||||
|
Loading…
Reference in New Issue
Block a user