From 373d67f91e504bb3fd0747f5e927e1bca0b54f83 Mon Sep 17 00:00:00 2001 From: eggy Date: Fri, 3 Nov 2023 12:22:45 -0400 Subject: [PATCH] ece205: add convolution, impulse --- docs/2a/ece205.md | 51 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 51 insertions(+) diff --git a/docs/2a/ece205.md b/docs/2a/ece205.md index 2ccebb1..82776ad 100644 --- a/docs/2a/ece205.md +++ b/docs/2a/ece205.md @@ -162,6 +162,57 @@ $$ \mathcal L\{u_c(t)f(t-c)\}=e^{-sc}\mathcal L\{f\} $$ +### Convolution + +Convolution is a weird thingy that does weird things. + +$$(f*g)(t)=\int^t_0f(\tau)g(t-\tau)d\tau$$ + +It is commutative ($f*g=g*f$) and is useful in transforms: + +$$\mathcal L\{f*g\}=\mathcal L\{f\}\mathcal L\{g\}$$ + +!!! example + To solve $4y''+y=g(t),y(0)=3, y'(0)=-7$: + + \begin{align*} + 4\mathcal L\{y''\}+\mathcal L\{y\}&=\mathcal L\{g(t)\} \\ + 4(s^2\mathcal L\{y\}-s\cdot y(0) - y'(0))+\mathcal L\{y\} &=\mathcal L\{g(t)\} \\ + \mathcal L\{y\}(4s^2+1)-12s+28&=\mathcal L\{g(t)\} \\ + \mathcal L\{y\}&=\frac{\mathcal L\{g(t)\}}{4s^2+1} + \frac{12s}{4s^2+1} - \frac{28}{4s^2+1} \\ + y&=\mathcal L^{-1}\left\{\frac{1}{4s^2+1}\mathcal L\{g(t)\}\right\} + \mathcal L^{-1}\left\{3\frac{s}{s^2+\frac 1 4}\right\}-\mathcal L^{-1}\left\{7\frac{1}{s^2+\frac 1 4}\right\} \\ + &= \mathcal L^{-1}\left\{\frac 1 2\mathcal L\left\{\sin\left(\tfrac 1 2 t\right)\right\}\mathcal L\{g(t)\} \right\}+3\cos\left(\tfrac 1 2 t\right)-14\sin\left(\tfrac 1 2t\right) \\ + &=\frac 1 2\left(\sin\left(\tfrac 1 2 t\right)*g(t)\right)+3\cos\left(\tfrac 1 2 t\right)-14\sin\left(\tfrac 1 2t\right) \\ + &=\frac 1 2\int^t_0\sin(\tfrac 1 2\tau)g(t-\tau)d\tau + 3\cos(\tfrac 1 2 t)-14\sin(\tfrac 1 2 t) + \end{align*} + +### Impulse + +The **impulse for duration $\epsilon$** is defined by the **dirac delta function**: + +$$ +\delta_\epsilon(t)=\begin{cases} +\frac 1\epsilon & \text{if }0\leq t\leq\epsilon \\ +0 & \text{else} +\end{cases} +$$ + +As $\epsilon\to 0, \delta_\epsilon(t)\to\infty$. Thus: +$$ +\delta(t-a)=\begin{cases} +\infty & \text{if }t=a \\ +0 & \text{else} +\end{cases} \\ +\boxed{\int^\infty_0\delta(t-a)dt=1} +$$ + +If a function is continuous, multiplying it by the impulse function is equivalent to turning it on at that particular point. For $a\geq 0$: + +$$\boxed{\int^\infty_0\delta(t-a)dt=g(a)}$$ + +Thus we also have: + +$$\mathcal L\{\delta (t-a)\}=e^{-as}\implies\mathcal L^{-1}\{1\}=\delta(t)$$ ## Resources