From 4653b6a1483b409b7a24018bfb88aadef1e84313 Mon Sep 17 00:00:00 2001 From: eggy Date: Mon, 27 Nov 2023 15:42:51 -0500 Subject: [PATCH] ece205: add fourier transform --- docs/2a/ece205.md | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) diff --git a/docs/2a/ece205.md b/docs/2a/ece205.md index c160949..595a7ab 100644 --- a/docs/2a/ece205.md +++ b/docs/2a/ece205.md @@ -509,6 +509,40 @@ $$\frac{1}{2L}\int^L_{-L}\underbrace{[f(t)]^2}_\text{time domain}dt=\sum^\infty_ \frac{\pi^2}{6}&=\sum^\infty_{n=1}\frac{1}{n^2} \end{align*} +### Fourier transform + +To convert a function to a Fourier series: + +$$\mathcal F\{f(x)\}=\hat f(\omega)=\int^\infty_{-\infty}f(x)e^{-i\omega x}dx$$ + +To convert a Fourier series back to the original function, the following conditions must hold: + +- there must not be any infinite discontinuities: $\int^\infty_{-\infty}|f(x)|dx<\infty$ +- in any finite interval, there must be a finite number of extrema and discontinuities + +Then, the **Fourier integral** / **inverse Fourier transform** converges to $f(x)$ wherever continuous and $\frac 1 2[f(x^+)+f(x^-)]$ at discontinuities. + +$$\mathcal F^{-1}\{\hat f(\omega)\}=f(x)=\frac{1}{2\pi}\int^\infty_{-\infty}\hat f(\omega)e^{i\omega x}d\omega$$ + +!!! example + For $f(x)=\begin{cases} 1 & -1