From 4676b0ff25616f08b96482ea02e49e0679223f25 Mon Sep 17 00:00:00 2001 From: eggy Date: Mon, 23 Jan 2023 11:10:23 -0500 Subject: [PATCH] math119: add chain rule --- docs/1b/math119.md | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) diff --git a/docs/1b/math119.md b/docs/1b/math119.md index 911cbb0..d986b2a 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -216,3 +216,31 @@ f(x,y,z)&=\begin{bmatrix}x(t) \\ y(t) \\ z(t)\end{bmatrix} \\ &=(x(t), y(t), z(t)) \end{align*} $$ + +The **derivative** of a parametric function is equal to the vector sum of the derivative of its components: + +$$\frac{df}{dt}=\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2+\left(\frac{dz}{dt}\right)^2}$$ + +Sometimes, the **chain rule for multivariable functions** creates a new branch in a tree for each independent variable. + +For two-variable functions, if $z=f(x,y)$: + +$$\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}$$ + +Sample tree diagram: + +(Source: LibreTexts) + +!!! example + This can be extended for multiple functions — for the function $z=f(x,y)$, where $x=g(u,v)$ and $y=h(u,v)$: + + (Source: LibreTexts) + + Determining the partial derivatives with respect to $u$ or $v$ can be done by only following the branches that end with those terms. + + $$ + \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \\ + $$ + +!!! warning + If the function only depends on one variable, $\frac{d}{dx}$ is used. Multivariable functions must use $\frac{\partial}{\partial x}$ to treat the other variables as constant.