ece106: wrap potential

This commit is contained in:
eggy 2023-02-11 14:29:47 -05:00
parent 8f48bec66b
commit 47395e06b5

View File

@ -317,13 +317,13 @@ At a point $P$, the electrostatic potential $V_p$ or voltage is the work done pe
$$
V_p=\lim_{q\to 0^+}\frac{W_i}{q} \\
W_I=\int^p_\infty\vec F_I\bullet \vec{dl}
W_I=\int^p_\infty\vec F_I\bullet \vec{dl}=\Delta U=QV_p
$$
Because the desired force acts opposite to the force from the electric field, as long as $\vec E$ is known at each point:
$$
V_p=-\int^p_\infty\vec E\bullet\vec{dl}
V_p=-\int^p_\infty\vec E\bullet\vec{dl} \\
V_p=-\int^p_\infty E\ dr
$$
@ -337,7 +337,7 @@ Therefore, the potential due to a point charge is equal to:
$$V_p=-\int^p_\infty\frac{kQ}{r^2}dr=\frac{kQ}{r}$$
**Positive** charges naturally move to **lower** potentials ($V$ decreases) while negative charges do the opposite.
**Positive** charges naturally move to **lower** potentials ($V$ decreases) while negative charges do the opposite. Potential energy always decreases.
In order to calculate the voltage for charge distributions:
@ -348,3 +348,11 @@ $$V_p=-\int^p_\infty\vec E\bullet\vec{dl}$$
- If the charge is asymmetric:
$$V_p=\int_\text{charge dist}\frac{kdQ}{r}$$
The electric field always points in the direction of **lower** potential, and is equal to the **negative gradient** of potential.
$$\vec E=-\nabla V$$
If $\vec E$ is constant:
$$\vec E=\frac{Q_{enc\ net}}{\epsilon_0\oint dS}$$