diff --git a/docs/sph3u7.md b/docs/sph3u7.md index ba03282..ec91551 100644 --- a/docs/sph3u7.md +++ b/docs/sph3u7.md @@ -699,7 +699,7 @@ $$E\propto I\propto A^2$$ $$E=E_0\cos\theta$$ And so: -$$I=I_0\cos\theta$$ +$$I=I_0\cos^2\theta$$ When **unpolarised light** passes through a polariser, the average result of $I\cos\theta$ is $\frac{1}{2}$, so the intensity of polarised light is **half** of the intensity of unpolarised light.