From 52ad890562eedfcb113f43db364e305662d6c2d2 Mon Sep 17 00:00:00 2001 From: eggy Date: Tue, 31 Jan 2023 21:12:12 -0500 Subject: [PATCH] math119: supplement constraint optimisation --- docs/1b/math119.md | 58 ++++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 54 insertions(+), 4 deletions(-) diff --git a/docs/1b/math119.md b/docs/1b/math119.md index db1e7e2..5edf483 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -294,16 +294,16 @@ If there is a limitation in optimising for $f(x,y)$ in the form $g(x,y)=K$, new $$\nabla f = \lambda\nabla g, g(x,y)=K$$ -If possible, $\nabla g=\vec 0, g(x,y)=K$ should also be tested. +The largest/smallest values of $f(x,y)$ from the critical points return the maxima/minima. If possible, $\nabla g=\vec 0, g(x,y)=K$ should also be tested **afterward**. !!! example If $A(x,y)=xy$, $g(x,y)=K: x+2y=400$, and $A(x,y)$ should be maximised: \begin{align*} - \nabla f &= (y, x) \\ - \nabla g &= (1, 2) \\ - (y, x) &= \lambda (1, 2) \\ + \nabla f &= \left \\ + \nabla g &= \left<1, 2\right> \\ + \left &= \lambda \left<1, 2\right> \\ \begin{cases} y &= \lambda \\ x &= 2\lambda \\ @@ -314,6 +314,56 @@ If possible, $\nabla g=\vec 0, g(x,y)=K$ should also be tested. \therefore y=100,x=200,A=20\ 000 \end{align*} +??? example + If $f(x,y)=y^2-x^2$ and the constraint $\frac{x^2}{4} + y^2=1$ must be satisfied: + + \begin{align*} + \nabla f &=\left<-2x, 2y\right> \\ + \nabla g &=\left<\frac{1}{2} x,2y\right> \\ + \tag{$\left<0,0\right>$ does not satisfy constraints} \left<-2x,2y\right>&=\lambda\left<-\frac 1 2 x,2y\right> \\ + &\begin{cases} + -2x &= \frac 1 2\lambda x \\ + 2y &= \lambda2y \\ + \frac{x^2}{4} + y^2&= 1 + \end{cases} \\ + \\ + 2y(1-\lambda)&=0\implies y=0,\lambda=1 \\ + &\begin{cases} + y=0&\implies x=\pm 2\implies\left<\pm2, 0\right> \\ + \lambda=1&\implies \left<0,\pm 1\right> + \end{cases} + \\ + \tag{by substitution} \max&=(2,0), (-2, 0) \\ + \min&=(0, -1), (0, 1) + \end{align*} + +??? example + If $f(x, y)=x^2+xy+y^2$ and the constraint $x^2+y^2=4$ must be satisfied: + + \begin{align*} + \tag{domain: bounded at $-2\leq x\leq 2$}y=\pm\sqrt{4-x^2} \\ + f(x,\pm\sqrt{4-x^2}) &= x^2+(\pm\sqrt{4-x^2})x + 4-x^2 \\ + \frac{df}{dx} &=\pm(\sqrt{4-x^2}-\frac{1}{2}\frac{1}{\sqrt{4-x^2}}2x(x)) \\ + \tag{$f'(x)=0$} 0 &=4-x^2-x^2 \\ + x &=\pm\sqrt{2} \\ + \\ + 2+y^2 &= 4 \\ + y &=\pm\sqrt{2} \\ + \therefore f(x,y) &= 2, 6 + \end{align*} + + Alternatively, trigonometric substitution may be used to solve the system parametrically. + + \begin{align*} + x^2+y^2&=4\implies &x=2\cos t \\ + & &y=2\sin t \\ + \therefore f(x,y) &= 4+2\sin(2t),0\leq t\leq 2\pi \\ + \tag{include endpoints $0,2\pi$}t &= \frac\pi 4,\frac{3\pi}{4},\frac{5\pi}{4} \\ + \end{align*} + +!!! warning + Terms cannot be directly cancelled out in case they are zero. + This applies equally to higher dimensions and constraints by adding a new term for each constraint. Given $f(x,y,z)$ with constraints $g(x,y,z)=K$ and $h(x,y,z)=M$: $$\nabla f=\lambda_1\nabla g + \lambda_2\nabla h$$