ece108: add proof techniques

This commit is contained in:
eggy 2023-01-16 22:23:46 -05:00
parent 79a01eebed
commit 5eb26c161c

View File

@ -196,3 +196,60 @@ $$\forall x\in\mathbb R,\forall y\in\mathbb R\equiv \forall x,y\in\mathbb R$$
$\exists y\in\mathbb R,\forall x\in\mathbb R, x-y=1$ is **false** as when $x$ is selected first, it is impossible for every value of $y$ to satisfy the open sentence. $\exists y\in\mathbb R,\forall x\in\mathbb R, x-y=1$ is **false** as when $x$ is selected first, it is impossible for every value of $y$ to satisfy the open sentence.
## Proof techniques
There are a variety of methods to prove or disprove statements.
- **Deduction**: a chain of logical inferences from a starting assumption to a conclusion
- **Case analysis**: exhausting all possible cases (e.g., truth table)
- **Contradiction**: assuming the conclusion is false, which follows that a core assumption is false, therefore the conclusion must be true
- **Contrapositive**: is equivalent to the original statement
- **Counterexample**: disproves things
- **Induction**: Prove for a small case, then prove that that applies for all cases
Implications can be proven in two simple steps:
1. It is assumed that the hypothesis is true (the implication is always true when it is false)
2. Proving that it follows that the conclusion is true
!!! example "Proving implications"
Prove that if $n+7$ is even, $n+2$ is odd.
$\text{Proof:}$
$\text{Assume }n+7\text{ is an even number. It follows that for some }k\in\mathbb Z$
$$
\begin{align*}
n+7&=2k \\
\text{s.t.} n+2&=2k-5 \\
&=2(k-3)+1
\end{align*}
$$
$\text{which is of the form }2z+1,z\in\mathbb Z,\text{ thus } n+2\text{ is odd.}$
!!! example "Proof by contradiction"
Prove that there is no greatest integer.
$\text{Proof:}$
$\text{ Let }n\in\mathbb Z\text{ be given and assume }\overbrace{\text{for the sake of contradiction}^\text{FTSOC}}\text{ that }n\text{ is the largest integer. Note that }n+1\in\mathbb Z\text{ and }n+1>n.\text{ This contradicts the initial assumption that }n\text{ is the largest integer, therefore there is no largest integer.}$
### Formal theorems
An **even number** is a multiple of two.
$$\boxed{n\ \text{is even}\iff\exists k\in\mathbb Z,n=2k}$$
An **odd number** is a multiple of two plus one.
$$\boxed{n\text{ is odd}\iff\exists k\in\mathbb Z,n=2k+1}$$
A number is **divisible** by another if it can be part of its product.
$$\boxed{n\text{ is divisible by } m\iff\exists k\in\mathbb Z,n=mk}$$
A number is a **perfect square** if it is the square of an integer.
$$n\text{ is a perfect square}\iff \exists k\in\mathbb Z,n=k^2$$