ece108: add proof techniques
This commit is contained in:
parent
79a01eebed
commit
5eb26c161c
@ -196,3 +196,60 @@ $$\forall x\in\mathbb R,\forall y\in\mathbb R\equiv \forall x,y\in\mathbb R$$
|
|||||||
|
|
||||||
$\exists y\in\mathbb R,\forall x\in\mathbb R, x-y=1$ is **false** as when $x$ is selected first, it is impossible for every value of $y$ to satisfy the open sentence.
|
$\exists y\in\mathbb R,\forall x\in\mathbb R, x-y=1$ is **false** as when $x$ is selected first, it is impossible for every value of $y$ to satisfy the open sentence.
|
||||||
|
|
||||||
|
## Proof techniques
|
||||||
|
|
||||||
|
There are a variety of methods to prove or disprove statements.
|
||||||
|
|
||||||
|
- **Deduction**: a chain of logical inferences from a starting assumption to a conclusion
|
||||||
|
- **Case analysis**: exhausting all possible cases (e.g., truth table)
|
||||||
|
- **Contradiction**: assuming the conclusion is false, which follows that a core assumption is false, therefore the conclusion must be true
|
||||||
|
- **Contrapositive**: is equivalent to the original statement
|
||||||
|
- **Counterexample**: disproves things
|
||||||
|
- **Induction**: Prove for a small case, then prove that that applies for all cases
|
||||||
|
|
||||||
|
Implications can be proven in two simple steps:
|
||||||
|
|
||||||
|
1. It is assumed that the hypothesis is true (the implication is always true when it is false)
|
||||||
|
2. Proving that it follows that the conclusion is true
|
||||||
|
|
||||||
|
!!! example "Proving implications"
|
||||||
|
Prove that if $n+7$ is even, $n+2$ is odd.
|
||||||
|
|
||||||
|
$\text{Proof:}$
|
||||||
|
|
||||||
|
$\text{Assume }n+7\text{ is an even number. It follows that for some }k\in\mathbb Z$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
n+7&=2k \\
|
||||||
|
\text{s.t.} n+2&=2k-5 \\
|
||||||
|
&=2(k-3)+1
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$\text{which is of the form }2z+1,z\in\mathbb Z,\text{ thus } n+2\text{ is odd.}$
|
||||||
|
|
||||||
|
!!! example "Proof by contradiction"
|
||||||
|
Prove that there is no greatest integer.
|
||||||
|
|
||||||
|
$\text{Proof:}$
|
||||||
|
|
||||||
|
$\text{ Let }n\in\mathbb Z\text{ be given and assume }\overbrace{\text{for the sake of contradiction}^\text{FTSOC}}\text{ that }n\text{ is the largest integer. Note that }n+1\in\mathbb Z\text{ and }n+1>n.\text{ This contradicts the initial assumption that }n\text{ is the largest integer, therefore there is no largest integer.}$
|
||||||
|
|
||||||
|
### Formal theorems
|
||||||
|
|
||||||
|
An **even number** is a multiple of two.
|
||||||
|
|
||||||
|
$$\boxed{n\ \text{is even}\iff\exists k\in\mathbb Z,n=2k}$$
|
||||||
|
|
||||||
|
An **odd number** is a multiple of two plus one.
|
||||||
|
|
||||||
|
$$\boxed{n\text{ is odd}\iff\exists k\in\mathbb Z,n=2k+1}$$
|
||||||
|
|
||||||
|
A number is **divisible** by another if it can be part of its product.
|
||||||
|
|
||||||
|
$$\boxed{n\text{ is divisible by } m\iff\exists k\in\mathbb Z,n=mk}$$
|
||||||
|
|
||||||
|
A number is a **perfect square** if it is the square of an integer.
|
||||||
|
|
||||||
|
$$n\text{ is a perfect square}\iff \exists k\in\mathbb Z,n=k^2$$
|
||||||
|
Loading…
Reference in New Issue
Block a user