diff --git a/docs/1b/math119.md b/docs/1b/math119.md index df905a8..2dfc81e 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -750,3 +750,24 @@ $$\sum^\infty_{n=1}\frac{1}{n^p}$$ converges if and only if $p>1$. +### Comparison test + +For two series $\sum a_n$ and $\sum b_n$ where **all terms are positive**, if $a_n\leq b_n$ for all $n$, either both converge or both diverge. + +The **limit comparison test** has the same requirements, but if $L=\lim_{n\to\infty}\frac{a_n}{b_n}$ such that $0