math115: up to date
This commit is contained in:
parent
feb425900e
commit
6c78f4be3c
@ -1 +1,259 @@
|
|||||||
# MATH 115: Linear Algebra
|
# MATH 115: Linear Algebra
|
||||||
|
|
||||||
|
## Set theory
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- Natural numbers ($\mathbb N$) are all **integers** greater than zero.
|
||||||
|
- Integers ($\mathbb Z$) are all non-decimal numbers.
|
||||||
|
- Rational numbers ($\mathbb Q$) are all numbers representable as a fraction.
|
||||||
|
- Irrational numbers are all **real** numbers not representable as a fraction.
|
||||||
|
- Real numbers ($\mathbb R$) are all rational or irrational numbers.
|
||||||
|
|
||||||
|
The **subset sign** ($\subseteq$) indicates that one **set** is strictly within another. The **not subset sign** ($\not\subseteq$) indicates that at least one element in the first set is not in the second.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
- Natural numbers are a subset of integers, or $\mathbb N \subseteq \mathbb Z$.
|
||||||
|
- Integers are not a subset of natural numbers, or $\mathbb Z \not\subseteq \mathbb N$.
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
The subset sign is not to be confused with the **element of** sign ($\in$), as the former only applies to sets while the latter only applies to elements.
|
||||||
|
|
||||||
|
Sets can be subtracted with a **backslash** (\\), returning a set with all elements in the first set not in the second.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
The set of irrational numbers can be represented as the difference between the real and rational number sets, or:
|
||||||
|
$$\mathbb R \backslash \mathbb Q$$
|
||||||
|
|
||||||
|
## Complex numbers
|
||||||
|
|
||||||
|
A complex number can be represented in the form:
|
||||||
|
$$x+yj$$
|
||||||
|
|
||||||
|
where $x$ and $y$ are real numbers, and $j$ is the imaginary $\sqrt{-1}$ (also known as $i$ outside of engineering). This implies that every real number is also in the set of complex numbers as $y$ can be set to zero.
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- $Re(z)$ is the **real component** of complex number $z$.
|
||||||
|
- $Im(z)$ is the **imaginary component** of complex number $z$.
|
||||||
|
|
||||||
|
These numbers can be treated effectively like any other number.
|
||||||
|
|
||||||
|
### Properties of complex numbers
|
||||||
|
|
||||||
|
All of these properties can be derived from expanding the standard forms.
|
||||||
|
|
||||||
|
Where $z=x+yj$ and $w=a+bj$:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
zw&=(ax-by)+(bx+ay)j \\
|
||||||
|
\frac{1}{z} &= \frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}j \\
|
||||||
|
z^0 &= 1
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
??? example
|
||||||
|
If $z=2+5j$ and $w=1+3j$:
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\frac{z}{w} &= (2+5j)(\frac{1}{1+9}-\frac{3}{1+9}j) \\
|
||||||
|
&= (2+5j)(\frac{1}{10}-\frac{3}{10j}) \\
|
||||||
|
&= \frac{1}{5}-\frac{3}{5}j+\frac{1}{2}j+\frac{3}{2} \\
|
||||||
|
&= \frac{17}{10}-\frac{1}{10}j
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
??? example
|
||||||
|
To solve for $z$ in $z^2+4=0$:
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
(x+yj)^2&=-4 \\
|
||||||
|
x^2+2xyj - y^2 &= -4 + 0j \\
|
||||||
|
(x^2-y^2) + 2xyj &= -4+0j \\
|
||||||
|
\\
|
||||||
|
∵ x, y \in \mathbb R: 2xyj &= 0j \\
|
||||||
|
∴ \begin{cases}
|
||||||
|
x^2-y^2=-4 \\
|
||||||
|
2xy = 0
|
||||||
|
\end{cases} \\
|
||||||
|
\\
|
||||||
|
x=0 &\text{ or } y=0 \\
|
||||||
|
\pu{if } x=0&: y =\pm 2 \\
|
||||||
|
\pu{if } y=0&: \text{no real solutions} \\
|
||||||
|
\\
|
||||||
|
∴ x&=0, y=\pm 2 \\
|
||||||
|
z&=\pm 2j
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
??? example
|
||||||
|
To solve for $z$ in $z^2=5+12j$:
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
(x+yj)^2&=5+12j \\
|
||||||
|
(x^2-j^2)+2xyj = 5+12j \\
|
||||||
|
\\
|
||||||
|
\begin{cases}
|
||||||
|
x^2-y^2=5 \\
|
||||||
|
2xy = 12
|
||||||
|
\end{cases} \\
|
||||||
|
\\
|
||||||
|
y &= \frac{6}{x} \\
|
||||||
|
x^2 - \frac{6}{x}^2 &= 5\\
|
||||||
|
x^4 - 36 - 5x^2 &= 0 \\
|
||||||
|
x^2 &= 9, -4, x\in \mathbb R \\
|
||||||
|
x &= 3, -3 \\
|
||||||
|
y &= 2, -2 \\
|
||||||
|
z &= 3+2j, -3-2j
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Conjugates
|
||||||
|
|
||||||
|
The conjugate of any number can be written with a bar above it.
|
||||||
|
$$\overline{x+yj} = x-yj$$
|
||||||
|
|
||||||
|
The conjugate of a conjugate is the original number.
|
||||||
|
$$\overline{\overline{ z}} = z$$
|
||||||
|
|
||||||
|
$z$ is a real number **if and only if** its conjugate is itself.
|
||||||
|
$$z\in\mathbb R \iff \overline{z}=z$$
|
||||||
|
|
||||||
|
$z$ is purely imaginary **if and only if** its conjugate is the negative version of itself.
|
||||||
|
$$z\in\text{only imaginary} \iff \overline{z}=-z$$
|
||||||
|
|
||||||
|
Conjugates are flexible and can almost be treated as just another factor.
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\overline{z+w}&=\overline{z}+\overline{w} \\
|
||||||
|
\overline{zw}&=(\overline{z})(\overline{w}) \\
|
||||||
|
\overline{z^k}&=\overline{z}^k \\
|
||||||
|
\overline{\biggr(\frac{z}{w}\biggr)} &= \frac{\overline{z}}{\overline{w}}, w\neq 0
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Modulus
|
||||||
|
|
||||||
|
The modulus of a number is represented by the absolute value sign. It is equal to its magnitude if the complex number were a vector.
|
||||||
|
$$|z| = \sqrt{x^2+y^2}$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
The modulus of complex number $2-j$ is:
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
|2-j|&=\sqrt{2^2+(-1)^2} \\
|
||||||
|
&= -5
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
If there is no imaginary component, a complex number's modulus is its absolute value.
|
||||||
|
$$z\in\mathbb R: |z|=|Re(z)|$$
|
||||||
|
|
||||||
|
Complex numbers cannot be directly compared because imaginary numbers have no inequalities, but their moduli can — the modulus of one complex number can be greater than another's.
|
||||||
|
|
||||||
|
#### Properties of moduli
|
||||||
|
|
||||||
|
These can be also be manually derived.
|
||||||
|
|
||||||
|
If the modulus is zero, the complex number is zero.
|
||||||
|
$$|z|=0 \iff z=0$$
|
||||||
|
|
||||||
|
The modulus of the conjugate is equal to the modulus of the original.
|
||||||
|
$$|\overline{z}| = |z|$$
|
||||||
|
|
||||||
|
The number multiplied by the conjugate modulus is the square of the modulus.
|
||||||
|
$$z|\overline{z}|=|z|^2$$
|
||||||
|
|
||||||
|
Moduli are also almost just a factor:
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\biggr|\frac{z}{w}\biggr| &= \frac{|z|}{|w|}, w \neq 0 \\
|
||||||
|
|zw| &= |z||w|
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The moduli of the sum is always less than the sum of the moduli of the individual numbers — this is also known as the triangle inequality theorem.
|
||||||
|
|
||||||
|
$$|z+w| \leq |z|+|w|$$
|
||||||
|
|
||||||
|
### Geometry
|
||||||
|
|
||||||
|
In setting the x- and y-axes to the imaginary and real components of a complex number, complex numbers can be represented almost as vectors.
|
||||||
|
|
||||||
|
<img src="https://upload.wikimedia.org/wikipedia/commons/6/69/Complex_conjugate_picture.svg">(Source: Wikimedia Commons, GNU FGL 1.2 or later)</img>
|
||||||
|
|
||||||
|
The complex number $x+yj$ will be on the point $(x, y)$, and the modulus is the magnitude of the vector. Complex number moduli can be compared graphically if their points lie within a drawn circle centred on the origin with a point on another vector.
|
||||||
|
|
||||||
|
### Polar form
|
||||||
|
|
||||||
|
The variable $r$ is equal to the modulus of a complex number $|z|$.
|
||||||
|
|
||||||
|
From the Pythagorean theorem, the polar form of a complex number can be expressed using the angle of the modulus to the real axis. Where $\theta$ is the angle of the modulus to the real axis:
|
||||||
|
$$z=r(\cos\theta + j\sin\theta)$$
|
||||||
|
|
||||||
|
Trigonometry can be used to calculate $\cos\theta$ and $\sin\theta$ as $\cos\theta = \frac{x}{r}$ and $\sin\theta = \frac{y}{r}$.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
$1+\sqrt{3}j=2\big(\cos\frac{\pi}{3} + j\sin\frac{\pi}{3}\big)$
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
The polar form is not unique because going around 360° results in the same vector. Where $k$ is any integer.
|
||||||
|
$$r(\cos\theta + j\sin\theta) = r(\cos(\theta+2k\pi) + j\sin(\theta+2k\pi))$$
|
||||||
|
|
||||||
|
The polar form is useful for the multiplication of complex numbers.
|
||||||
|
|
||||||
|
Because of the angle sum identities:
|
||||||
|
$$z_1z_2=r_1r_2(\cos(\theta_1+\theta_2) + j\sin(\theta_1+\theta_2))$$
|
||||||
|
|
||||||
|
This can be extrapolated into Moivre's theorem:
|
||||||
|
$$z^n=r^n(\cos(n\theta) + j\sin(n\theta))$$
|
||||||
|
|
||||||
|
To determine the roots of a complex number, Moivre's theorem can be used again:
|
||||||
|
$$\sqrt[n]{z} = \sqrt[n]{r}\big(\cos\big(\frac{\theta + 2k\pi}{n}\big) + j\sin\big(\frac{\theta + 2k\pi}{n}\big)\big)$$
|
||||||
|
|
||||||
|
where $k$ is every number in the range $[0, n-1], k\in\mathbb Z$.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
To find all answers for $w^5=-32$:
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
w^5 &= 32(\cos\theta + \sin\theta) \\
|
||||||
|
w_k &= \sqrt[5]{32}\biggr[\cos\biggr(\frac{\pi + 2k\pi}{5}\biggr) + j\sin\biggr(\frac{\pi+2k\pi}{5}\biggr)\biggr]
|
||||||
|
w_0 &= 2\biggr(\cos\frac{\pi}{5} + j\sin\frac{\pi}{5}\biggr) = 2e^{j\frac{\pi}{5}} \\
|
||||||
|
w_1 &= 2\biggr(\cos\frac{3\pi}{5} + j\sin\frac{3\pi}{5}\biggr) = 2e^{j\frac{3\pi}{5}} \\
|
||||||
|
w_2 &= 2(\cos\pi + j\sin\pi = 2e^{j\pi} \\
|
||||||
|
\\
|
||||||
|
\text{etc.}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The **exponential** form of a complex number employs **Euler's identity**:
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
e^{j\pi} &= -1 \\
|
||||||
|
e^{j\pi} &= \cos\theta + j\sin\theta \\
|
||||||
|
z &= re^{j\pi}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Proofs
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
|
||||||
|
## Vectors
|
||||||
|
|
||||||
|
The column vector shows a vector of the form $(x, y, ...)$ from top to bottom as $(x_1, x_2, ...)$ as the number of dimensions increases.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\newcommand\colv[1]{\begin{bmatrix}#1\end{bmatrix}}
|
||||||
|
\colv{x_1 \\ x_2 \\ x_3}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The zero vector is full of zeroes.
|
||||||
|
$$
|
||||||
|
\colv{0 \\ 0 \\ 0}
|
||||||
|
$$
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
Vectors of different dimensions cannot be compared — the missing dimensions cannot be treated as 0.
|
||||||
|
|
||||||
|
The standard form of a vector is written as the difference between two points: $\vec{OA}$ where $O$ is the origin and $A$ is any point. $\vec{AB}$ is the vector as a difference between two points.
|
||||||
|
Loading…
Reference in New Issue
Block a user