diff --git a/docs/ce1/math117.md b/docs/ce1/math117.md index 23610c2..7b136a2 100644 --- a/docs/ce1/math117.md +++ b/docs/ce1/math117.md @@ -200,3 +200,53 @@ In order to PFD: ∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1} \end{align*} $$ + +## Trigonometry + +1 radian represents the angle when the length of the arc of a circle is equal to the radius. Where $s$ is the arc length: + +$$\theta=\frac{s}{r}$$ + +The following table indicates the special angles that should be memorised: + +| Angle (rad) | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | 1 | +| --- | --- | --- | --- | --- | --- | +| cos | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | 0 | +| sin | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 | + +### Identities + +The Pythagorean identity is the one behind right angle triangles: + +$$\cos^2\theta+\sin^2\theta = 1$$ + +Cosine and sine can be converted between by an angle shift: + +$$ +\cos\biggr(\theta-\frac{\pi}{2}\biggr) = \sin\theta \\ +\sin\biggr(\theta-\frac{\pi}{2}\biggr) = \cos\theta +$$ + +The **angle sum identities** allow expanding out angles: + +$$ +\cos(a+b)=\cos a\cos b - \sin a\sin b \\ +\sin(a+b)=\sin a\cos b + \cos a\sin b +$$ + +Subtracting angles is equal to the conjugates of the angle sum identities. + +The **double angle identities** simplify the angle sum identity for a specific case. + +$$ +\sin2\theta = 2\sin\theta\cos\theta \\ +$$ + +The **half angle formulas** are just random shit. + +$$ +1+\tan^2\theta = \sec^2\theta \\ +\cos^2\theta = \frac{1}{2}(1+\cos2\theta) \\ +\sin^2\theta = \frac{1}{2}(1-\cos2\theta) +$$ +