From 79a01eebed936ffc06619ab339f0af48f4bdbd6f Mon Sep 17 00:00:00 2001 From: eggy Date: Mon, 16 Jan 2023 21:39:40 -0500 Subject: [PATCH] math119: add linear approximations --- docs/1b/math119.md | 57 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 57 insertions(+) diff --git a/docs/1b/math119.md b/docs/1b/math119.md index 128df0b..12e3be7 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -108,3 +108,60 @@ The order of the variables matter: $f_{xy}$ is the derivative of f wrt. x *and t !!! warning In multivariable calculus, **differentiability does not imply continuity**. + +### Linear approximations + +A **tangent plane** represents all possible partial derivatives at a point of a function. + +For two-dimensional functions, the differential could be used to extrapolate points ahead or behind a point on a curve. + +$$ +\Delta f=f'(a)\Delta d \\ +\boxed{y=f(a)+f'(a)(x-a)} +$$ + +The equations of the two unit direction vectors in $x$ and $y$ can be used to find the normal of the tangent plane: + +$$ +\vec n=\vec d_1\times\vec d_2 \\ +\begin{bmatrix}-f_x(a,b) \\ -f_y(a,b) \\ 1\end{bmatrix} = \begin{bmatrix}1\\0\\f_x(a,b)\end{bmatrix} +\begin{bmatrix}0\\1\\f_y(a,b)\end{bmatrix} +$$ + +Therefore, the general expression of a plane is equivalent to: + +$$ +z=C+A(x-a)+B(x-b) \\ +\boxed{z=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)} +$$ + +??? tip "Proof" + The general formula for a plane is $c_1(x-a)+c_2(y-b)+c_3(z-c)=0$. + + If $y$ is constant such that $y=b$: + + $$z=C+A(x-a)$$ + + which must represent in the x-direction as an equation in the form $y=b+mx$. It follows that $A=f_x(a,b)$. A similar concept exists for $f_y(a,b)$. + + If both $x=a$ and $y=b$ are constant: + + $$z=C$$ + + where $C$ must be the $z$-point. + +Usually, functions can be approximated via the **tangent at $x=a$.** + +$$f(x)\simeq L(x)$$ + +!!! warning + Approximations are less accurate the stronger the curve and the farther the point is away from $f(a,b)$. A greater $|f''(a)|$ indicates a stronger curve. + + +!!! example + Given the function $f(x,y)=\ln(\sqrt[3]{x}+\sqrt[4]{y}-1)$, $f(1.03, 0.98)$ can be linearly approximated. + + $$ + L(x=1.03, y=0.98)=f(1,1)=f_x(1,1)(x-1)+f_y(1,1)(y-1) \\ + f(1.03,0.98)\simeq L(1.03,0.98)=0.005 + $$