ece108: add set intro
This commit is contained in:
parent
1d386d4dcd
commit
7b84547cb9
@ -294,3 +294,63 @@ Induction can be applied to the whole set of integers by proving the following:
|
||||
|
||||
Alternatively, some steps can be skipped in **strong induction** by proving that if for $k\in\mathbb N$, $P(i)$ holds for all $i\leq k$, so $P(k+1)$ holds. In other words, by assuming that the statement is true for all values before $k$. If strong induction is true, regular induction must also be true, but not vice versa.
|
||||
|
||||
## Sets
|
||||
|
||||
!!! definition
|
||||
- A **set** is an unordered collection of distinct objects.
|
||||
- An **element/member** of a set is an object in that set.
|
||||
- A **multiset** is an unordered collection of objects.
|
||||
|
||||
Sets are expressed with curly brackets:
|
||||
|
||||
$$\{s_1, s_2,\dots\}$$
|
||||
|
||||
Numbers are defined as sets of recursively empty sets:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
0&:=\empty \\
|
||||
1&:=\{\empty\} \\
|
||||
2&:=\{\empty,\{\empty\}\}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
### Special sets
|
||||
|
||||
- $\mathbb N$ is the set of **natural numbers** $\{1, 2, 3,\dots\}$
|
||||
- $\mathbb W$ is the set of **whole numbers** $\{0, 1, 2,\dots\}$
|
||||
- $\mathbb Z$ is the set of **integers** $\{\dots, -1, 0, 1, \dots\}$
|
||||
- $\mathbb Z^+_0$ is the set of **positive integers, including zero** — these modifiers can be applied to the set of negative integers and real numbers as well
|
||||
- $2\mathbb Z$ is the set of **even integers**
|
||||
- $2\mathbb Z + 1$ is the set of **odd integers**
|
||||
- $\mathbb Q$ is the set of **rational numbers**
|
||||
- $\mathbb R$ is the set of **real numbers**
|
||||
- $\empty$ or $\{\}$ is the **empty set** with no elements
|
||||
|
||||
### Set builder notation
|
||||
|
||||
!!! definition
|
||||
- The **domain of discourse** is the context of the current problem, which may limit the universal set (e.g., if only integers are discussed, the domain is integers only)
|
||||
|
||||
$x$ is an element if $x$ is in $\mathcal U$ and $P(x)$ is true.
|
||||
|
||||
$$\{x\in\mathcal U|P(x)\}$$
|
||||
|
||||
!!! example
|
||||
All even numbers: $A=\{n\in\mathbb Z,\exists k\in\mathbb Z,n=2k\}$
|
||||
|
||||
$f(x)$ is an element if $x$ is in $\mathcal U$, and $P(x)$ is true:
|
||||
|
||||
$$\{f(x)|\underbrace{x\in\mathcal U, P(x)}_\text{swappable, omittable}\}$$
|
||||
|
||||
!!! example
|
||||
- All even numbers: $A=\{2k|k\in\mathbb Z\}$
|
||||
- All rational numbers: $\mathbb Q=\{\frac a b | a,b\in\mathbb Z,b\neq 0\}$
|
||||
|
||||
The **complement** of a set is the set containing every element **not** in the set.
|
||||
|
||||
$$\overline S$$
|
||||
|
||||
The **universal set** is the set containing everything, and is the complement of the empty set.
|
||||
|
||||
$$\mathcal U=\overline\empty$$
|
||||
|
@ -244,3 +244,4 @@ Sample tree diagram:
|
||||
|
||||
!!! warning
|
||||
If the function only depends on one variable, $\frac{d}{dx}$ is used. Multivariable functions must use $\frac{\partial}{\partial x}$ to treat the other variables as constant.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user