From 819849f7c6c079bc41e843a60a422fba7f9a162c Mon Sep 17 00:00:00 2001 From: eggy Date: Tue, 21 Nov 2023 22:01:58 -0500 Subject: [PATCH] ece205: fix bug --- docs/2a/ece205.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/2a/ece205.md b/docs/2a/ece205.md index c1a6032..5b6bafe 100644 --- a/docs/2a/ece205.md +++ b/docs/2a/ece205.md @@ -396,7 +396,7 @@ Thus if a Fourier series on $(0,L)$ exists, it can be expressed as either a **Fo \begin{align*} u(x,t)&=\sum^\infty_{n=1}\alpha_ne^{-left(\frac{n\pi\sqrt 2}{\pi}\right)^2t}\sin(\frac{n\pi x}{\pi}) - &=\sum^\infty_{n=1}\apha_ne^{-2n^2t}\sin(nx) \\ + &=\sum^\infty_{n=1}\alpha_ne^{-2n^2t}\sin(nx) \\ \alpha_n&=\frac 2 L\int^L_0f(x)\sin(\frac{n\pi x}{L})dx \\ &=\frac2\pi\int^{\pi/2}_0\frac\pi 2\sin(nx)dx+\frac2\pi\int^\pi_{\pi/2}(x-\frac\pi2\sin(nx)dx \\ &=\frac 1 n[1+(-1)^{n+1}-\cos(\frac{n\pi}{2})-\frac{2}{n\pi}\sin(\frac{n\pi}{2}]