From 8b8b488766eb6ce7c971a127aa2a4ec06b23be81 Mon Sep 17 00:00:00 2001 From: eggy Date: Sun, 23 Oct 2022 17:05:37 -0400 Subject: [PATCH] math115: add matrix algebra --- docs/ce1/math115.md | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) diff --git a/docs/ce1/math115.md b/docs/ce1/math115.md index e467c4b..e9d3951 100644 --- a/docs/ce1/math115.md +++ b/docs/ce1/math115.md @@ -386,6 +386,36 @@ Each variable $x_n$ is a **leading variable** if there is a leading entry in $A$ !!! example TODO: LEARN example + +### Matrix algebra + +!!! definition + - $M_{m\times n}(\mathbb R)$ is the set of all real matrices. + - A **square matrix** has $m=n$. + - The **zero matrix** $0_{m\times n}$ has every entry equal to 0. + +In a $m\times n$ matrix $A$, $a_{ij}$ or $(A)_{ij}$ represents the entry in the $i$th row and $j$th column. + +$$A=[a_{ij}]$$ + +Two matrices with size $m\times n$ $[a_{ij}]$ and $[b_{ij}]$ are equal if and only if $a_{ij} = b_{ij}$ for every i and j (formally, for every $i=1, ..., m, j = 1, ..., n$). + +Properties of matrices include: + +- $(A+B)_{ij} = (A)_{ij} + (B)_{ij}$ +- $(cA)_{ij} = (cB)_{ij}, c\in\mathbb R$ +- $A-B=A+(-1)B$ + +The **matrix transpose** $A^T$ is the matrix satisfying $(A^T)_{ij}=(A)_j$, as if it was reflected along the primary diagonal. + +A matrix is **symmetric** if $A^T = A$, implying a square matrix. + +Properties of transposed matrices: + +- $A^T\in M_{n\times m}(\mathbb R)$ +- $(A^T)^T = A$ +- $(A+B)^T=A^T+B^T$ + ### Matrix-vector product