diff --git a/docs/1b/math119.md b/docs/1b/math119.md index 3874402..08b2dda 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -372,3 +372,53 @@ $$\nabla f=\lambda_1\nabla g + \lambda_2\nabla h$$ - If end points exist, those should be added - If no endpoints exist and the limits go to $\pm\infty$, there are no absolute extrema + +## Double integration + +In a nutshell, double integration is done by taking infinitely small lines then finding the area under those lines to form a volume. + +For a surface formed by vectors $[a,b]$ and $[c,d]$: + +$$[a,b]\times[c,d]=R=\{(x,y)|a\leq x\leq b,c\leq y\leq d\}$$ + +If the function is continuous and bounds do not depend on variables, the order of integration doesn't matter. + +$$\boxed{\int^d_c\int^b_af(x,y)dxdy}$$ + +!!! example + For $f(x,y)=x^2y$ and $R=[0,3]\times[1,2]$: + + \begin{align*} + V&=\int^2_1\int^3_0x^2ydxdy \\ + &=\int^2_1\left[\frac 1 3 3^3y\right]dy \\ + &=\frac{9}{2}y^2\biggr|^2_1 \\ + &=\frac 9 2 (4)-\frac 9 2 \\ + &=\frac{27}{2} + \end{align*} + +If the function is the product of two functions of separate variables, i.e., if $f(x,y)=g(x)\cdot h(y)$: + +$$\int^b_a\int^d_cg(x)h(y)dxdy=\left(\int^b_ah(y)dy\right)\left(\int^d_cg(x)dx\right)$$ + +### Volume betweeen two functions + +The result of the bound variable should be integrated first. For functions of $y$: + +$$\int^b_a\left(\int^{g(x)}_{h(x)}f(x,y)dy\right)dx$$ + +Functions can also be replaced to be bounded by the other if necessary. + +!!! example + For $f(x,y)$ bounded by $y=x$ and $y=\sqrt x$: + + $$\int^1_0\int^{\sqrt x}_xf(x,y)dydx = \int^1_0\left(\int^y_{y^2}f(x,y)dx\right)dy$$ + +??? example + For $f(x,y)=xy$ bounded by $x=2$, $y=0$, and $y=2x$: + + \begin{align*} + \int^2_0\int^{2x}_0xy\ dydx&=\int^2_0x\left(\frac 1 2(2x)^2\right)dx \\ + &=\int^2_02x^3dx \\ + &=\frac 1 4 x^4(2)\biggr|^2_0 \\ + &= 8 + \end{align*}