diff --git a/docs/1b/ece106.md b/docs/1b/ece106.md index dc3064d..6d4dede 100644 --- a/docs/1b/ece106.md +++ b/docs/1b/ece106.md @@ -1,3 +1,42 @@ # ECE 106: Electricity and Magnetism +## MATH 117 review +!!! definition + A definite integral is composed of: + + - the **upper limit**, $b$, + - the **lower limit**, $a$, + - the **integrand**, $f(x)$, and + - the **differential element**, $dx$. + +$$\int^b_a f(x)\ dx$$ + +The original function **cannot be recovered** from the result of a definite integral unless it is known that $f(x)$ is a constant. + +## N-dimensional integrals + +Much like how $dx$ represents an infinitely small line, $dx\cdot dy$ represents an infinitely small rectangle. This means that the surface area of an object can be expressed as: + +$$dS=dx\cdot dy$$ + +Therefore, the area of a function can be expressed as: + +$$S=\int^x_0\int^y_0 dy\ dx$$ + +where $y$ is usually equal to $f(x)$, changing on each iteration. + +!!! example + The area of a circle can be expressed as $y=\pm\sqrt{r^2-x^2}$. This can be reduced to $y=2\sqrt{r^2-x^2}$ because of the symmetry of the equation. + + $$ + \begin{align*} + A&=\int^r_0\int^{\sqrt{r^2-x^2}}_0 dy\ dx \\ + &=\int^r_0\sqrt{r^2-x^2}\ dx + \end{align*} + $$ + +!!! warning + Similar to parentheses, the correct integral squiggly must be paired with the correct differential element. + +## Cartesian coordinates diff --git a/docs/1b/ece108.md b/docs/1b/ece108.md index d628bb3..73d77e0 100644 --- a/docs/1b/ece108.md +++ b/docs/1b/ece108.md @@ -1,2 +1,3 @@ # ECE 108: Discrete Math 1 +## Truth tables diff --git a/docs/1b/ece140.md b/docs/1b/ece140.md new file mode 100644 index 0000000..2242b97 --- /dev/null +++ b/docs/1b/ece140.md @@ -0,0 +1,3 @@ +# ECE 140: Linear Circuits + +## Voltage, current, and resistance diff --git a/docs/1b/math119.md b/docs/1b/math119.md index 70cb124..c113a40 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -1 +1,5 @@ # MATH 119: Calculus 2 + +## Multivariable functions + +### Sketching multivariable functions