math115: add matrix multiplication

This commit is contained in:
eggy 2022-10-25 19:10:38 -04:00
parent 06fe07656b
commit 9b22b626a1

View File

@ -416,6 +416,34 @@ Properties of transposed matrices:
- $(A^T)^T = A$ - $(A^T)^T = A$
- $(A+B)^T=A^T+B^T$ - $(A+B)^T=A^T+B^T$
### Matrix multiplication
In the two matrices $A\in M_{m\times n}(\mathbb R)$ and $B\in M_{n\times k}(\mathbb R)$, where $B=[\vec b_1, ..., \vec b_n]$ are columns:
$$AB=[A\vec b_1, ..., A\vec b_n]$$
where the resultant matrix is of size $m\times k$.
Extra columns in $B$ are ignored.
Alternatively, where $r_i$ is each row in $A$:
$$
AB = \begin{bmatrix}
\vec r_1\bullet \vec b_1 & ... & \vec r_1\bullet b_k \\
... & ... & ... \\
\vec r_m\bullet b_1 & ... & \vec r_m\bullet \vec b_k
\end{bmatrix}
$$
Properties of matrix multiplication, where $x\in \mathbb R$:
- $(AB)^T = B^T + A^T$
- $A(BC) = A(BC)$
- $AB \neq BA$
- $(B+C)A = BA+ BC$
- $(xA)B = x(AB) = A(xB)$
### Matrix-vector product ### Matrix-vector product