diff --git a/docs/ce1/math117.md b/docs/ce1/math117.md index 91d3396..aa16b24 100644 --- a/docs/ce1/math117.md +++ b/docs/ce1/math117.md @@ -725,3 +725,30 @@ $$L=\int^\beta_\alpha\sqrt{f'(\phi)^2 + f(\phi)^2}\ d\phi = \int^\beta_\alpha\sq ## Complex numbers Please see [MATH 115: Linear Algebra#Complex Numbers](/ce1/math115/#complex-numbers) for more information. + +### Impedance + +Where $\~i$ is a complex number representing the current of a circuit: + +$$\~i(t)=I\cdot Im(e^{j\omega t})$$ + +This can be related to Ohm's law, because $v(t)=IR\sin(\omega t)$ such that $\~v=IRe^{j\omega t}$: + +$$\~v=R\~i$$ + +In fact, t + +$$ +\~v=Z\~i,\text{ where } Z=\begin{cases} +\begin{align*} +&R &\text{ for resistors} \\ +&\frac{1}{j\omega C} &\text{ for capacitors} \\ +&j\omega L &\text{ for inductors} +\end{align*} +\end{cases} +$$ + +Impedance has similar properties to resistance. + +- In series: $Z = Z_1 + Z_2 + Z_3 ...$ +- In parallel: $\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} ...$