diff --git a/docs/ce1/math117.md b/docs/ce1/math117.md index e6540cb..1f101d9 100644 --- a/docs/ce1/math117.md +++ b/docs/ce1/math117.md @@ -576,6 +576,8 @@ Please see [SL Math - Analysis and Approaches 2#Area between two curves](/g11/mc - A **Type 2** region is bounded by functions of $y$, which can be solved by integrating $y$. - A **Type 3** region can be viewed as either Type 1 or 2. +Substituting $u=\cos\theta$, $du=-\sin\theta d\theta$ is common. + ### Mean values @@ -596,3 +598,46 @@ If $a\in\mathbb R$, functions of the form $\sqrt{x^2\pm a^2}$ or $\sqrt{a^2-x^2} - In $\sqrt{a^2-x^2} \rightarrow x=a\sin\theta$ …which can be used to derive other trig identities to be integrated. + +### Rational integrals + +All integrals of rational functions are expressible as more rational functions, ln, and arctan. + +Partial fraction decomposition is useful here. + +$$\int \frac{1}{x^2+a^2}dx=\frac{1}{a}tan^{-1}\left(\frac{x}{a}\right)+C$$ + +## Summary of all integration rules + +- $\int x^n\ dx = \frac{1}{n+1}x^{n+1} + C,n\neq -1$ +- $\int \frac{1}{x}dx = \ln|x| + C$ +- $\int e^x\ dx = e^x + C$ +- $\int a^x\ dx = \frac{1}{\ln a} a^x + C$ +- $\int\cos x\ dx = \sin x + C$ +- $\int\sin x\ dx = -\cos x + C$ +- $\int\sec^2 x\ dx = \tan x + C$ +- $\int\csc^2 x\ dx = -\cot x + C$ +- $\int\sec x\tan x\ dx = \sec x + C$ +- $\int\csc x\cot x\ dx = -\csc x + C$ +- $\int\text{cosh}\ x\ dx = \text{sinh}\ x + C$ +- $\int\text{sinh}\ x\ dx = \text{cosh}\ x + C$ +- $\int\text{sech}^2\ x\ dx = \text{tanh}\ x + C$ +- $\int\text{sech}\ x\text{tanh}\ x\ dx = \text{sech}\ x + C$ +- $\int\frac{1}{1+x^2}dx=\tan^{-1}x+C$ +- $\int\frac{1}{a^2+x^2}dx=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C$ +- $\int\frac{1}{\sqrt{1-x^2}}dx=\sin^{-1}x+C$ +- $\int\frac{1}{x\sqrt{x^2-1}}dx=\sec^{-1}x+C$ +- $\int\sec x\ dx = \ln|\sec x+\tan x|+C$ +- $\int\csc x\ dx = -\ln|\csc x + \cot x|+C$ + +## Applications of integration + +The length of a curve over a given interval is equal to: + +$$L=\int^b_a\sqrt{1+\left(\frac{dy}{dx}\right)^2\ dx}$$ + +For curves bounded by functions of $y$: + +$$L(y)=\int^b_a\sqrt{1+\left(\frac{dx}{dy}\right)^2\ dy}$$ + +### Solids of revolution