diff --git a/docs/ce1/math117.md b/docs/ce1/math117.md index 6c9a54d..111dfdd 100644 --- a/docs/ce1/math117.md +++ b/docs/ce1/math117.md @@ -482,3 +482,49 @@ $$\lim_{x\to a}\frac{f(x)}{g(x)} = \lim_{x\to a}\frac{f'(x)}{g'(x)}$$ ### Related rates Please see [SL Math - Analysis and Approaches 1#Related rates](/g11/mhf4u7/#related-rates) for more information. + +## Differentials + +$\Delta x$ and $\Delta y$ represent tiny increments of $x$ and $y$. $dx$ and $dy$ are used when those tiny ammounts approach 0. + +Specifically, by rearranging the definition of the deriative, $df$ is a short form for the **differential** of $f$: + +$$f'(x)dx=dy=df$$ + +By abusing differentials, the tangent line of a point in a function can be approximated. + +$$\Delta f\approx f'(x)\Delta x$$ + +!!! example + If $f(x) = \sqrt{x},x_0=81$, $\sqrt{78}$ can be estimated by: + + $$ + \begin{align*} + \Delta x&=dx=78-81=-3 \\ + \frac{df}{dx} &= f'(x) \\ + df &= f'(x)dx \\ + &= \frac{1}{2\sqrt{81}}(-3) = -\frac{1}{6} \\ + f(78) &= \sqrt{81}-\frac{1}{6} \\ + &= \frac{53}{54} + \end{align*} + $$ + +### Curve sketching + +Please see [SL Math - Analysis and Approaches 1#5.2 - Increasing and decreasing functions](/g11/mhf4u7/#52-increasing-and-decreasing-functions) for more information. + +## Integrals + +Please see [SL Math - Analysis and Approaches 2#Integration](/g11/mhf4u7/#52-increasing-and-decreasing-functions) for more information. + +### More integration rules + +- $\int a^xdx = \frac{a^x}{\ln a} + C$ +- $\int\sec^2xdx=\tan x+C$ +- $\int\text{cosh } xdx = \text{sinh } x + C$ +- $\int\text{sinh } xdx = \text{cosh } x + C$ +- $\int\frac{1}{\sqrt{1-x^2}}dx = \sin^{-1}x+C$ +- $\int\csc^2xdx = -\cot x+C$ +- $\int\sec x\tan x dx = \sec x + C$ +- $\int\csc x\cot xdx = -\csc x + C$ +- $\int\frac{1}{1+x^2}dx=\tan^{-1}x+C$