math: Add matrices
This commit is contained in:
parent
a36892bb0e
commit
c6ae544cf2
100
docs/mcv4u7.md
100
docs/mcv4u7.md
@ -635,6 +635,106 @@ If no normals are scalar multiples:
|
|||||||
- the result is true with no variable (e.g., $0 = 0$), there are is an infinite number of solutions along a line
|
- the result is true with no variable (e.g., $0 = 0$), there are is an infinite number of solutions along a line
|
||||||
- the result contains a variable (e.g., $t = 4$), there is a single point of intersection at the parameter $t$.
|
- the result contains a variable (e.g., $t = 4$), there is a single point of intersection at the parameter $t$.
|
||||||
|
|
||||||
|
## Matrices
|
||||||
|
|
||||||
|
A **matrix** is a two-dimensional array with rows and columns, represented by a capital letter and a grid denoted by square brackets.
|
||||||
|
$$
|
||||||
|
A=
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & 2 & 3 \\
|
||||||
|
4 & 5 & 6
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$A_{ij}$ represents the element in the $i$th row and the $j$th column.
|
||||||
|
|
||||||
|
A **coefficient matrix** contains coefficients of variables.
|
||||||
|
$$
|
||||||
|
A=
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & 2 & 3 \\
|
||||||
|
4 & 5 & 6
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
An **augmented matrix** also contains constants, separated by a vertical line.
|
||||||
|
$$
|
||||||
|
A=
|
||||||
|
\left[\begin{array}{rrr|r}
|
||||||
|
1 & 2 & 3 & 5 \\
|
||||||
|
4 & 5 & 6 & 10
|
||||||
|
\end{array}\right]
|
||||||
|
$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
The equation system
|
||||||
|
$$
|
||||||
|
x+2y-4z=3 \\
|
||||||
|
-2x+y+3z=4 \\
|
||||||
|
4x-3y-z=-2
|
||||||
|
$$
|
||||||
|
can be written as the matrix
|
||||||
|
$$
|
||||||
|
A=
|
||||||
|
\left[\begin{array}{rrr|r}
|
||||||
|
1 & 2 & -4 & 3 \\
|
||||||
|
-2 & 1 & 3 & 4 \\
|
||||||
|
4 & -3 & -1 & -2
|
||||||
|
\end{array}\right]
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Gaussian elimination
|
||||||
|
|
||||||
|
Gaussian elimination is used to solve a system of linear relations, such as that of plane equations. It aims to reduce a matrix into its **row echelon form** shown below to solve for each variable.
|
||||||
|
$$
|
||||||
|
A=
|
||||||
|
\left[\begin{array}{rrr|r}
|
||||||
|
a & b & c & d \\
|
||||||
|
0 & e & f & g \\
|
||||||
|
0 & 0 & h & i
|
||||||
|
\end{array}\right]
|
||||||
|
$$
|
||||||
|
|
||||||
|
The following **row operations** can be performed on the matrix to achieve this state:
|
||||||
|
|
||||||
|
- swapping (interchanging) the position of two rows
|
||||||
|
- $R_a \leftrightarrow R_b$
|
||||||
|
- multiplying a row by a non-zero constant
|
||||||
|
- $AR_a \to R_a$
|
||||||
|
- adding/subtracting rows, overwriting the destination row
|
||||||
|
- $R_a\pm R_b\to R_b$
|
||||||
|
- multiplying a row by a non-zero constant and then adding/subtracting it to another row
|
||||||
|
- $AR_a + R_b \to R_b$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
In the matrix from the previous example, by performing $R_1\leftrightarrow R_2$:
|
||||||
|
$$
|
||||||
|
A=
|
||||||
|
\left[\begin{array}{rrr|r}
|
||||||
|
-2 & 1 & 3 & 4 \\
|
||||||
|
1 & 2 & -4 & 3 \\
|
||||||
|
4 & -3 & -1 & -2
|
||||||
|
\end{array}\right]
|
||||||
|
$$
|
||||||
|
$5R_1\to R_1$:
|
||||||
|
$$
|
||||||
|
A=
|
||||||
|
\left[\begin{array}{rrr|r}
|
||||||
|
-10 & 5 & 15 & 20 \\
|
||||||
|
1 & 2 & -4 & 3 \\
|
||||||
|
4 & -3 & -1 & -2
|
||||||
|
\end{array}\right]
|
||||||
|
$$
|
||||||
|
$10R_2+R_1\to R_1$:
|
||||||
|
$$
|
||||||
|
A=
|
||||||
|
\left[\begin{array}{rrr|r}
|
||||||
|
0 & 25 & -25 & 50 \\
|
||||||
|
1 & 2 & -4 & 3 \\
|
||||||
|
4 & -3 & -1 & -2
|
||||||
|
\end{array}\right]
|
||||||
|
$$
|
||||||
|
|
||||||
## Resources
|
## Resources
|
||||||
|
|
||||||
- [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)
|
- [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)
|
||||||
|
Loading…
Reference in New Issue
Block a user