ece106: add tut

This commit is contained in:
eggy 2023-02-17 10:59:10 -05:00
parent a5041f349a
commit c7b3f211ea

View File

@ -333,7 +333,7 @@ Where $\vec dl$ is the path of the test charge from infinity to the point, and $
$$\vec E\bullet\vec{dl}=Edr$$ $$\vec E\bullet\vec{dl}=Edr$$
Therefore, the potential due to a point charge is equal to: Therefore, the potential due to a point charge is equal to (the latter is true only if distance from charge is always constant, regardless of distribution):
$$V_p=-\int^p_\infty\frac{kQ}{r^2}dr=\frac{kQ}{r}$$ $$V_p=-\int^p_\infty\frac{kQ}{r^2}dr=\frac{kQ}{r}$$
@ -356,3 +356,7 @@ $$\vec E=-\nabla V$$
If $\vec E$ is constant: If $\vec E$ is constant:
$$\vec E=\frac{Q_{enc\ net}}{\epsilon_0\oint dS}$$ $$\vec E=\frac{Q_{enc\ net}}{\epsilon_0\oint dS}$$
The **superposition** principle allows potential due to different charges to be calculated separately and summed together to achieve the same result.