ece106: add tut
This commit is contained in:
parent
a5041f349a
commit
c7b3f211ea
@ -333,7 +333,7 @@ Where $\vec dl$ is the path of the test charge from infinity to the point, and $
|
|||||||
|
|
||||||
$$\vec E\bullet\vec{dl}=Edr$$
|
$$\vec E\bullet\vec{dl}=Edr$$
|
||||||
|
|
||||||
Therefore, the potential due to a point charge is equal to:
|
Therefore, the potential due to a point charge is equal to (the latter is true only if distance from charge is always constant, regardless of distribution):
|
||||||
|
|
||||||
$$V_p=-\int^p_\infty\frac{kQ}{r^2}dr=\frac{kQ}{r}$$
|
$$V_p=-\int^p_\infty\frac{kQ}{r^2}dr=\frac{kQ}{r}$$
|
||||||
|
|
||||||
@ -356,3 +356,7 @@ $$\vec E=-\nabla V$$
|
|||||||
If $\vec E$ is constant:
|
If $\vec E$ is constant:
|
||||||
|
|
||||||
$$\vec E=\frac{Q_{enc\ net}}{\epsilon_0\oint dS}$$
|
$$\vec E=\frac{Q_{enc\ net}}{\epsilon_0\oint dS}$$
|
||||||
|
|
||||||
|
The **superposition** principle allows potential due to different charges to be calculated separately and summed together to achieve the same result.
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user