ece240: add mosfets
This commit is contained in:
parent
e9cf2d9edf
commit
ca29913314
@ -88,3 +88,48 @@ $$r_d=\left(\frac{\partial i_D}{\partial v_D}\right)^{-1} = \frac{V_T}{I_D}$$
|
||||
|
||||
!!! warning
|
||||
Oftentimes, turning off a DC source to nowhere is actually a short to ground.
|
||||
|
||||
## MOSFETs
|
||||
|
||||
A MOSFET is a transistor. Current flows from the drain to the source, and only if voltage is applied to the gate.
|
||||
|
||||
<img src="https://upload.wikimedia.org/wikipedia/commons/6/69/Mosfet_saturation.svg" width=500>(Source: Wikimedia Commons)</img>
|
||||
|
||||
<img src="https://upload.wikimedia.org/wikipedia/commons/9/91/Transistor_Simple_Circuit_Diagram_with_NPN_Labels.svg" width=300>(Source: Wikimedia Commons)</img>
|
||||
|
||||
In strictly DC, current passes the gate if the gate voltage is greater than the threshold voltage $V_G>V_t$. The difference between the two is known as the **overdrive voltage** $V_{ov}$:
|
||||
|
||||
$$V_{ov}=V_G-V_t$$
|
||||
|
||||
At a small $V_{DS}$, or in AC, the slope of $I_D$ to $V_{DS}$ is proportional to $V_G$. The **channel transconductance** $g_{DS}$ represents this slope, which is constant based on the **transconductance parameter** of the device.
|
||||
|
||||
$$\frac{I_D}{V_{DS}}=g_{DS}=k_nV_{ov}$$
|
||||
|
||||
Before the saturation region, the current grows exponentially:
|
||||
|
||||
$$\boxed{I_s=k_n(V_{ov}-\tfrac 1 2V_{DS})V_{DS}}$$
|
||||
|
||||
Afterward, it remains constant, based on the overdrive voltage:
|
||||
|
||||
$$\boxed{I_s=\frac 1 2k_nV_{ov}^2}$$
|
||||
|
||||
### Common-source amplifiers
|
||||
|
||||
<img src="https://upload.wikimedia.org/wikipedia/commons/4/4f/N-channel_JFET_common_source.svg" width=200>(Source: Wikimedia Commons)</img>
|
||||
|
||||
Where $V_{out}=$V_{DS}$:
|
||||
|
||||
<img src="https://media.cheggcdn.com/media/b65/b65d59bd-ac35-4d28-b811-0ad1b5cf5bb6/phpCBbhn6" width=700 />
|
||||
|
||||
$|V_{ds}|>|V_{gs}|$ indicates AC voltage gain.
|
||||
|
||||
The gain can be modelled with Ohm's law:
|
||||
|
||||
$$V_{DS}=V_{DD}-I_DR_D=V_{DD}-\frac 1 2k_n(V_{GS}-V_t)R_D$$
|
||||
|
||||
At a certain gate voltage:
|
||||
|
||||
\begin{align*}
|
||||
A_V&=\frac{\partial V_{DS}}{\partial V_{GS}} \\
|
||||
&=-g_{DS}R_D
|
||||
\end{align*}
|
||||
|
Loading…
Reference in New Issue
Block a user