ece108: add intervals, disjoint sets
This commit is contained in:
parent
79fd74f03c
commit
da0bae4c69
@ -355,6 +355,10 @@ The **universal set** is the set containing everything, and is the complement of
|
|||||||
|
|
||||||
$$\mathcal U=\overline\empty$$
|
$$\mathcal U=\overline\empty$$
|
||||||
|
|
||||||
|
Two sets are **disjoint** if they do not have any elements in common.
|
||||||
|
|
||||||
|
$$S\cup T=\empty$$
|
||||||
|
|
||||||
### Set operations
|
### Set operations
|
||||||
|
|
||||||
A **subset** is inside another that is a **superset**.
|
A **subset** is inside another that is a **superset**.
|
||||||
@ -391,3 +395,10 @@ $$
|
|||||||
\overline S=\mathcal U-S
|
\overline S=\mathcal U-S
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
### Intervals
|
||||||
|
|
||||||
|
An interval can be represented as a bounded set.
|
||||||
|
|
||||||
|
$$[a,b)=\{x\in\mathcal U|a\leq x\wedge x<b\}$$
|
||||||
|
|
||||||
|
$\empty$ is any impossible interval.
|
||||||
|
Loading…
Reference in New Issue
Block a user