diff --git a/docs/1b/ece108.md b/docs/1b/ece108.md index a2b5e45..8bf7020 100644 --- a/docs/1b/ece108.md +++ b/docs/1b/ece108.md @@ -538,9 +538,38 @@ An **injective function**, **injection**, or **one-to-one function** is a functi $$\forall x_1,x_2\in\text{dom}(f), \text{ if } f(x_1)=f(x_2),x_1=x_2$$ -A **surjective function**, **surjection**, or **onto** is a function that has its codomain equal to its range. +A **surjective function**, **surjection**, or **onto** is a function that has its codomain equal to its range. A surjection $g:Y\to X$ exists if and only if an injection $f:X\to Y$ exists. $$ \forall y\in\text{cod}(f),\exists x\in\text{dom}(f), f(x)=y \\ \text{rang}(f)=\text{cod}(f) $$ + +A **bijective function** is both injective and surjective. + +An **inverse relation** swaps the domain, codomain, and ordered pairs. + +$$ +\begin{align*{ +R^{-1}:Y&\to X \\ +R(x)&\mapsto x +$$ + +A function is **invective** or **invertible** if and only if it is bijective. All inversions are also bijective. + +$$f^{-1^{-1}}=f$$ + +A **composition** maps the codomain of one to the domain of another function only if the first is a subset ($Y_1\subseteq Y_2$). + +$$ +\begin{align*} +f&:X\to Y_1,x\mapsto f(x) \\ +g&:Y_2\to Z,y\mapsto g(y) \\ +gf&: X\to Z,x\mapsto g(f(x)) +\end{align*} +$$ + +Compositions are commutative but not associative. + +- $h(gf)=(hg)f$ +- $hgf\neq hfg$