math119: polar integral intro
This commit is contained in:
parent
7b99e1ccf5
commit
ecef4402e5
@ -422,3 +422,13 @@ Functions can also be replaced to be bounded by the other if necessary.
|
|||||||
&=\frac 1 4 x^4(2)\biggr|^2_0 \\
|
&=\frac 1 4 x^4(2)\biggr|^2_0 \\
|
||||||
&= 8
|
&= 8
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
### Double polar integrals
|
||||||
|
|
||||||
|
The differential elements can be directly replaced:
|
||||||
|
|
||||||
|
$$dA=dxdy=\rho d\rho d\phi$$
|
||||||
|
|
||||||
|
In general, the radius should be the inner integral, and functions converted from Cartesian to polar forms.
|
||||||
|
|
||||||
|
$$\int^{\phi_2}_{\phi_1}\int^{\rho_2}_{\rho_1}f(\rho\cos\phi,\rho\sin\phi)\rho d\rho d\phi$$
|
||||||
|
Loading…
Reference in New Issue
Block a user