diff --git a/docs/1b/math119.md b/docs/1b/math119.md index 43c4098..df905a8 100644 --- a/docs/1b/math119.md +++ b/docs/1b/math119.md @@ -708,3 +708,45 @@ An approximation correct to $n$ decimal places requires that $|R_n(x)|<10^{-n}$. The upper and lower bounds of a Taylor polynomial are clearly $P(x)\pm R(x)$. Integrating them separately reveals creates bounds for the integral. $$\int P(x)dx-\int R(x)dx\leq\int P(x)\leq\int P(x)dx +\int R(x)dx$$ + +## Infinite series + +The $n$th partial sum of a sequence is used to determine divergence. + +$$S_n=\sum^n_{k=0}a_k=a_0 + a_1 ... a_n$$ + +A sum converges to $S$ if the sum eventually ends up there. Otherwise, if the limit is infinity or does not exist, it diverges. + +$$\lim_{x\to\infty}S_n=S\implies\sum^\infty_{n=0}a_n=S$$ + +### Divergence test + +By the divergence test, if the limit of each term never reaches zero, the sum diverges. + +$$\lim_{x\to\infty}a_n\neq 0\implies\sum^\infty_{n=0}a_n\text{ diverges}$$ + +### Geometric series + +The $n$th partial sum of a geometric series $ar^n$ is equal to: + +$$S_n=\frac{a(1-r)^{n+1}}{1-r}$$ + +To simply test for convergence: + +- If $|r|<1$, $S_n\to\frac{a}{1-r}$. +- Otherwise, it diverges by the test for divergence. + +### Integral test + +If $f(x)$ is **continuous**, **decreasing**, and **positive** on some $[a,\infty)$: + +$$\int^\infty_af(x)dx\text{ converges}\iff\sum^\infty_{k=a}f(k)\text{ converges$$ + +### p-series test + +For all $p\in\mathbb R$, a series of the form + +$$\sum^\infty_{n=1}\frac{1}{n^p}$$ + +converges if and only if $p>1$. +