ece108: add conditional probability
This commit is contained in:
parent
d80949eb51
commit
f2ba121fc5
@ -911,3 +911,19 @@ $$Pr\{X^{-1}(\{x\})\}$$
|
|||||||
Thus the **binomial distribution** for $r$ successes of $n$ total tries, if they are independent, is:
|
Thus the **binomial distribution** for $r$ successes of $n$ total tries, if they are independent, is:
|
||||||
|
|
||||||
$$Pr\{X=r\}{n\choose r}p^rq^{n-r}$$
|
$$Pr\{X=r\}{n\choose r}p^rq^{n-r}$$
|
||||||
|
|
||||||
|
### Independence
|
||||||
|
|
||||||
|
Please see [SL Math - Analysis and Approaches 2#Conditional probability](/g11/mcv4u7/#conditional-probability) for more information.
|
||||||
|
|
||||||
|
Two events are independent if they can be treated separately.
|
||||||
|
|
||||||
|
$$\text{independent}\iff Pr\{A\cap B\}=Pr\{A\}Pr\{B\}$$
|
||||||
|
|
||||||
|
Or, via the inclusion-exclusion theorem:
|
||||||
|
|
||||||
|
$$\text{independent}\iff Pr\{A\cup B\}=Pr\{A\}+Pr\{B\}-Pr\{A\}Pr\{B\}$$
|
||||||
|
|
||||||
|
**Bayes' theorem** provides a general formula for conditional probability:
|
||||||
|
|
||||||
|
$$Pr\{A|B\}=\frac{Pr\{B|A\}}{Pr\{B\}}$$
|
||||||
|
Loading…
Reference in New Issue
Block a user