math: add limit evaluation and properties
This commit is contained in:
parent
3bf6cff588
commit
f8723c4c98
101
docs/mhf4u7.md
101
docs/mhf4u7.md
@ -261,11 +261,112 @@ A sequence is a **function** with a domain of all positive integers in sequence,
|
|||||||
- The **recursive** formula for a sequence is $t_n = t_{n-1} + 2$ where $t_1 = 1$.
|
- The **recursive** formula for a sequence is $t_n = t_{n-1} + 2$ where $t_1 = 1$.
|
||||||
- The **arithmetic** formula for a sequence is $t_n = 2n-1$.
|
- The **arithmetic** formula for a sequence is $t_n = 2n-1$.
|
||||||
|
|
||||||
|
If the sequence is infinite, as $n$ becomes very large:
|
||||||
|
|
||||||
|
- If the sequence continuously grows, it **tends to infinity**. (E.g., $a_n = n^2, n ≥ 1$)
|
||||||
|
- If the sequence gets closer to a real number and converges on it, it **converges to a real limit**, or is convergent**. (E.g., $a_n = \frac{1}{n}, n ≥ 1$)
|
||||||
|
- If the sequence never approaches a number, it **does not tend to a limit**, or is **divergent**. (E.g., $a_n = \sin(n \pi)$)
|
||||||
|
|
||||||
### Limits
|
### Limits
|
||||||
|
|
||||||
|
A **limit** to a function is the behaviour of that function as a variable approaches, **but does not equal**, another variable.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
$$\lim_{x \to c} f(x) = L$$
|
||||||
|
"The limit of $f(x)$ as $x$ approaches $c$ is $L$."
|
||||||
|
|
||||||
|
If the lines on both sides of a limit do not converge at the same point, that limit *does not exist*.
|
||||||
|
|
||||||
|
If the lines on both sides of a limit become arbitrarily large as $x$ approaches $a$, it approaches infinity.
|
||||||
|
$$\lim_{x \to a} f(x) = ∞$$
|
||||||
|
|
||||||
|
### One-sided limits
|
||||||
|
|
||||||
|
A positive or negative sign is used at the top-right corner of the value approached to denote if that limit applies only to the negative or positive side, respectively. A limit without this sign applies to both sides.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
- $\lim_{x \to 3^-} f(x) = 2$ shows that as $x$ approaches $3$ from the negative (usually left) side, $f(x)$ approaches $2$.
|
||||||
|
- $\lim_{x \to 3^+} f(x) = 2$ shows that as $x$ approaches $3$ from the positive (usually right) side, $f(x)$ approaches $2$.
|
||||||
|
- $\lim_{x \to 3} f(x) = 2$ shows that as $x$ approaches $3$ from either side, $f(x)$ approaches $2$.
|
||||||
|
|
||||||
|
If $\lim_{x \to c^-} f(x) ≠ \lim_{x \to c^+} f(x)$, $\lim_{x \to c} f(x)$ **does not exist**.
|
||||||
|
|
||||||
|
### Properties of limits
|
||||||
|
|
||||||
|
The following properties assume that $f(x)$ and $g(x)$ have limits at $x = a$, and that $a$, $c$, and $k$ are all real numbers.
|
||||||
|
|
||||||
|
- $\lim_{x \to a} k = k$
|
||||||
|
- $\lim_{x \to a} x = a$
|
||||||
|
- $\lim_{x \to a} [f(x) ± g(x)] = \lim_{x \to a} f(x) ± \lim_{x \to a} g(x)$
|
||||||
|
- $\lim_{x \to a} [f(x) \cdot g(x)] = [\lim_{x \to a} f(x)] [\lim_{x \to a} g(x)]$
|
||||||
|
- $\lim_{x \to a} [k \cdot f(x)] = k \cdot \lim_{x \to a} f(x)$
|
||||||
|
- $\lim_{x \to a} [f(x)]^2 = [\lim_{x \to a} f(x)]^2$
|
||||||
|
|
||||||
### Evaluating limits
|
### Evaluating limits
|
||||||
|
|
||||||
|
When solving for limits, there are five central strategies used, typically in this order if possible:
|
||||||
|
|
||||||
|
#### Direct substitution
|
||||||
|
|
||||||
|
Substitute $x$ as $a$ and solve.
|
||||||
|
|
||||||
|
??? example
|
||||||
|
$$
|
||||||
|
\lim_{x \to 5} (x^2 + 4x + 3) \\
|
||||||
|
= 5^2 + 4(5) + 3 \\
|
||||||
|
= 48
|
||||||
|
$$
|
||||||
|
|
||||||
|
If **only** direct substitution fails and returns $\frac{0}{0}$, continue on with the following steps. If **only** the denominator is $0$, the limit **does not exist**.
|
||||||
|
|
||||||
|
#### Factorisation, expansion, and simplification
|
||||||
|
|
||||||
|
Attempt to factor out the variable as much as possible so that the result is not $\frac{0}{0}$, and then perform direct substitution.
|
||||||
|
|
||||||
|
??? example
|
||||||
|
$$
|
||||||
|
\lim_{x \to 1} \frac{x^2 - 1}{x-1} \\
|
||||||
|
= \lim_{x \to 1} \frac{(x + 1) (x - 1)}{x-1} \\
|
||||||
|
= \lim_{x \to 1} (x+1) \\
|
||||||
|
= 1 + 1 \\
|
||||||
|
= 2
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Rationalisation
|
||||||
|
|
||||||
|
If there is a square root, multiplying both sides of a fraction by the conjugate may allow direct substitution or factorisation.
|
||||||
|
|
||||||
|
??? example
|
||||||
|
$$
|
||||||
|
\lim_{x \to 0} \frac{\sqrt{1-x}-1}{x} \\
|
||||||
|
= \lim_{x \to 0} \frac{\sqrt{1-x}-1}{x} \cdot \frac{\sqrt{1-x}+1}{\sqrt{1-x}+1} \\
|
||||||
|
= \lim_{x \to 0} \frac{1-x - 1}{x\sqrt{1-x} + x} \\
|
||||||
|
= \frac{1}{\sqrt{1-x} + 1} \\
|
||||||
|
= \frac{1}{\sqrt{1-0} + 1} \\
|
||||||
|
= \frac{1}{2}
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### One-sided limits
|
||||||
|
|
||||||
|
There may only be one-sided limits. In this case, breaking the limit up into its two one-sided limits can confirm if the two-sided limit does not exist when looked at together.
|
||||||
|
|
||||||
|
#### Change in variable
|
||||||
|
|
||||||
|
Substituting a variable in for the variable to be solved and then solving in terms of that variable may help.
|
||||||
|
|
||||||
|
??? example
|
||||||
|
$$
|
||||||
|
\lim_{x \to 0} \frac{x}{(x+1^\frac{1}{3}-1} \\
|
||||||
|
\text{let } (x+1)^\frac{1}{3} \text{ be } y \\
|
||||||
|
x + 8 = y^3 \\
|
||||||
|
x = y^3 - 8, \text{as } x \to 0, y \to 2 \\
|
||||||
|
\lim_{y \to 2} \frac{y-2}{y^3 - 8} \\
|
||||||
|
= \frac{(y-2)(y^2 + 4y + 4)}{(y^3-8)(y^2 + 4y + 4)} \\
|
||||||
|
= \frac{1}{y^2 + 4y + 4} \\
|
||||||
|
= \frac{1}{1^2 + 4(1) + 4} \\
|
||||||
|
= \frac{1}{12}
|
||||||
|
$$
|
||||||
|
|
||||||
## Resources
|
## Resources
|
||||||
|
|
||||||
- [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)
|
- [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)
|
||||||
|
Loading…
Reference in New Issue
Block a user