diff --git a/docs/2a/ece205.md b/docs/2a/ece205.md index c8c22cb..9d28f2e 100644 --- a/docs/2a/ece205.md +++ b/docs/2a/ece205.md @@ -277,6 +277,37 @@ $$ \boxed{b_n=\frac 1 L\int^L_{-L}f(x)\sin(\frac{n\pi x}{L})dx} $$ +!!! example + The Fourier series for the square wave function: $f(x)=\begin{cases}-1 & -\pi < x < 0 \\ 1 & 0 < x < \pi\end{cases}$ + + The period is clearly $2\pi\implies L=\pi$. $f(x)$ is also odd, by inspection. + + \begin{align*} + a_n&=\frac 1\pi\int^\pi_{-\pi}\underbrace{f(x)\cos(\frac{n\pi x}{\pi})}_\text{odd × even = odd}dx=0=a_0 \\ + b_n&=\frac 1 \pi\int^\pi_{-\pi}f(x)\sin(\frac{n\pi x}{\pi})dx \\ + \tag{even}&=\frac 2\pi\int^\pi_0f(x)\sin(nx)dx \\ + \tag{$f(x)>1$ when $x>0$}&=\frac 2\pi\int^\pi_0\sin(nx)dx \\ + &=\frac 2\pi\left[\frac{-\cos nx}{n}\right]^\pi_0 \\ + &=\begin{cases} + \frac{4}{\pi n} & \text{if $n$ is odd} \\ + 0 & \text{else} + \end{cases} + \therefore f(x)&=\sum^\infty_{n=1}\frac 2\pi\left(\frac{1-(-1)^n}{n}\sin(nx)\right) \\ + \tag{only odd $n$s are non-zero}&=\frac4\pi\sum^\infty_{n=1}\frac{1}{2n-1}\sin[(2n-1)x] + \end{align*} + + Thus the Fourier series is $$. + +### Separation of variables + +To solve IBVPs, where $X(x)$ and $T(t)$ are exclusively functions of their respective variables: + +$$u(x,t)=X(x)T(t)$$ + +Substituting it into the IBVP results in a **separation constant** $-\lambda$. + +$$\boxed{\frac{T'(t)}{a^2T(t)}=\frac{X''(x)}{X(x)}=-\lambda}$$ + ## Resources - [Laplace Table](/resources/ece/laplace.pdf)